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Dominance Analysis 
 

This primer focuses on dominance analysis. We assume you have read the section on 
dominance analysis in Chapter 11, but we repeat parts of it here to set context. An issue 
often addressed when using multiple regression is that of identifying the relative 
importance of different predictors in the regression equation. Two general approaches 
have been used. One approach seeks to identify the subset of “important” predictors 
versus the subset of predictors that are “not important,” but without ranking predictors 
beyond this two category scheme. The second approach seeks to rank order all predictors 
in terms of their relative importance and provides a quantitative index of the magnitude 
of importance of the predictors. Dominance analysis focuses on the latter. In the ensuing 
discussion, we assume you are familiar with the basics of multiple regression. We begin 
by discussing the meaning of relative importance. We then consider the role of statistical 
significance tests in relative importance analysis. Next, we discuss seven methods for 
discerning relative importance, including standardized regression coefficients, zero order 
correlations, squared semi-part correlations, the Platt index, stepwise regression, 
orthogonalization methods, and dominance analysis. Finally, we discuss the role of 
sampling error in relative importance analysis, the use of covariates, and the case of 
binary outcomes.  

WHAT IS RELATIVE IMPORTANCE? 

There are many ways one can define relative importance in a regression context. One 
approach is to define it in terms of the proportion of variability that a given predictor 
accounts for in a criterion - more important variables account for more variability. 
Another approach is to define it in terms of how much outcome variability a predictor 
accounts for net other predictors in the equation. A complication with this approach is 
that there are many ways one can define the concept of “net other predictors.” Yet 
another approach focuses on change - if you change a predictor by a certain amount, how 
much does the outcome variable change? Predictors associated with more change in the 
outcome are more important, after adjusting for the metric difference in the predictors. A 
final strategy focuses on reduction of prediction error - the relative importance of 
predictors is dictated by the amount each predictor reduces the disparity between the 
predicted and observed outcome values.  
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Given the above, it should not be surprising that there is controversy among 
statisticians about how best to quantify relative importance of predictors in a regression 
equation. There is no one “correct” approach. Researchers often address the matter from 
multiple perspectives, using two or more of the approaches mentioned above. You also 
should keep in mind that the focus is on judging the relative importance of predictors not 
the absolute importance of a given effect. Judgments of absolute importance are 
inherently value laden and are far more complex than judgments of relative importance. 
For example, Rosenthal (1995) describes the decision to prematurely terminate a 
randomized trial on the effects of taking a small dose of aspirin each day on reducing 
heart attacks in middle age adults. The reason for the termination was because it had 
become so evident early in the trial that aspirin reduced heart attacks that to continue the 
study was deemed unethical for participants in the placebo condition. Thousands of lives 
every year would be saved by having physicians prescribe a small dose of aspirin each 
day as a preventative treatment to their middle-aged patients. Interestingly, the squared 
correlation indexing the effect of aspirin on heart attacks was a meager 0.0011, 
corresponding to a Cohen’s d of less than 0.01. In the abstract, this effect size would be 
deemed by many researchers as trivial. However, for life and death matters and the sheer 
number of people affected, the effect was extremely important. Finally, relative 
importance indices do not take into account issues of cost, practicality or modifiability, 
criteria that often are important in applied contexts. For example, a personnel manager 
might only want to consider variables that are easy to measure when forecasting future 
job performance; a prevention program designer might only want to consider variables 
that are potentially modifiable.  

STATISTICAL SIGNIFICANCE AND RELATIVE IMPORTANCE 

Some researchers use statistical significance tests as an initial screen for relative 
importance analysis. The idea is to trim from the equation predictors that are statistically 
non-significant and then focus the analysis of relative importance on the retained 
predictors. As straightforward as this seems, the approach can be problematic. The most 
obvious problem is that a study may have low statistical power, leading to the finding that 
important predictors have non-significant coefficients. This problem is more insidious 
than most scientists realize. Maxwell (2000) suggests that the typical correlation between 
variables in psychological research is about 0.30. If five predictors in a population are 
each correlated 0.30 with the criterion, as well as 0.30 with each other, then the 
population regression coefficient for each predictor will be non-zero and equal in value to 
the other predictors. The sample size necessary to obtain statistical power of 0.80 for a 
significance test of a regression coefficient in this scenario is about 420, a sample size 
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that is larger than many studies use. Maxwell (2000) reported a simulation study in which 
a multiple regression analysis was conducted using the above scenario, but with a sample 
size of only 100. He found that the most frequently occurring pattern of results, occurring 
45% of the time, was the case where one predictor had a statistically significant 
regression coefficient, but the other four did not. The next most common pattern, 
occurring 32% of the time, was that two of the predictors had statistically significant 
regression coefficients, but three did not. Thus, in a situation where each of the five 
predictors is of equal import in the population (that is, they all have the same correlation 
with the outcome and they all have the same regression coefficient), there was a high 
probability that only one or two of the predictors would exhibit statistical significance. 
Which predictors showed a statistically significant coefficient among the five predictors 
was essentially random. Results such as these should give theorists using smaller sample 
sizes pause about declaring a variable “unimportant” if it receives a statistically non-
significant regression coefficient. For relative importance analysis, we generally 
recommend against using theoretically uninformed statistical significance tests as a 
screen for predictor inclusion in the analysis.  

APPROACHES TO DETERMINING RELATIVE IMPORTANCE 

Standardized Regression Coefficients 

One common strategy used by researchers to index the relative importance of predictors 
is to use standardized regression coefficients. The larger the absolute value of the 
standardized coefficient for a predictor, the more important is that predictor.1 The use of 
standardization presumably equates the metrics of each predictor because after 
standardization each has a mean of 0 and a standard deviation of 1.0. A person with a 
score of 1.0 means the person scored one standard deviation above the mean of the 
predictor. A person with a score of -0.5 means the person scored half a standard deviation 
below the mean. And so on. The common metric, the argument goes, makes it possible to 
compare the magnitude of regression coefficients.  

One problem with this approach is that using standard deviations to equate metrics 
is dubious (Judd, McClelland & Ryan, 2009; Blanton & Jaccard, 2006). A hypothetical 
but somewhat “tongue-in-cheek” example clarifies this. Consider the adage “an apple a 
day keeps the doctor away.”  Suppose we analyze the number of times people see a 
doctor per year (mean = 2.5 and SD = 3) as a function of the number of apples and 
oranges they eat per week and obtain the following regression equation:  

                                                 
1 Instead of the absolute value, some researchers use the square of the coefficient, which also has the effect of 
removing the sign of the coefficient 
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Number of visits = 3.0  +  -1.0 Apples  +  -.25 Oranges.  

Based on this equation, an apple a week decreases the number of visits by 1, whereas an 
orange a week decreases the number of visits by 0.25 (on average): It takes four oranges 
to accomplish what one apple accomplishes. Suppose the SD for apples is 0.50 and for 
oranges it is 1.0. By the logic of standard scores, half an apple is substantively equivalent 
to one orange because half an apple is one SD above its mean and one orange also is one 
SD above its mean. This so called “equating” seems arbitrary and it can distort the 
estimated effects of apples and oranges on doctor visits. For example, the standardized 
regression equation for these data is 

Standardized number of visits = 0.0  +  -0.17 Apples  +  -.08 Oranges.  

and it appears, on the surface, that about two oranges has the same effect as one apple 
(i.e., -0.17 ≈ -0.08*2). So, which is it? According to just the SDs, one orange is analogous 
to half an apple because both are 1 SD equivalents. For the unstandardized equation, four 
oranges equals one apple in terms of its effect on doctor visits. For the standardized 
equation, two (standardized) oranges equals one (two standardized) apple in terms of its 
effect on (standardized) doctor visits. Can we really justify using SDs to equate apples 
and oranges? The SDs for them seem arbitrary and the standardization masks the true 
effects as reflected by the unstandardized equation. Extending the argument to more 
substantively grounded constructs, if our predictors of adolescent delinquency are 
parental rule setting and maternal education, is a one standard deviation difference 
between people for rule setting the same as a one standard deviation difference on 
maternal education, metric wise?  We doubt it. 

Richards (1982) shows that the standardized regression coefficient for a predictor in 
a multiple regression analysis is not only impacted by its standard deviation but also by 
the standard deviations of other predictors in the equation as well (which is not the case 
for unstandardized coefficients). Willit, Singer and Martin (1998) note that when 
different samples are taken from the exact same population, their SDs can be different 
(due to sampling error) and these differences will affect standardized coefficients but not 
the unstandardized coefficients. Darlington (1968) notes that in the presence of 
moderately to highly correlated predictors, standardized regression coefficients tend to 
exaggerate the relative importance of the predictor variable most highly correlated with 
the dependent variable and diminish the relative importance of other variables in the 
model. Using standardized regression coefficients to discern relative importance is 
problematic. 
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Correlations or Squared Correlations 

Another index of relative importance is the absolute zero order correlation of each 
predictor with the outcome or, alternatively, the square of the correlation. Darlington 
(1990) argues that the zero order correlation is more appropriate to use than the squared 
correlation, but this is controversial (see Johnson & LeBreton, 2004). The obvious 
weaknesses of both indices is they ignore the overlapping explained variance with the 
other predictors in the equation due to correlations among predictors.  

Squared Semi-part Correlations 

Another index of relative importance is the squared semi-part correlation between a 
predictor and the outcome holding constant all other predictors in the equation. Suppose 
we have three predictors, X1, X2 and X3, and Y is our outcome. The squared semi-part 
correlation for X1 is how much the squared correlation increases when Y is predicted 
from X1, X2 and X3 as opposed to being predicted from just X2 and X3. It represents the 
incremental explained variance in the outcome due to X1. The squared semi-part 
correlation for X2 is how much the squared correlation increases when Y is predicted 
from X1, X2 and X3 as opposed to being predicted from just X1 and X3. It represents the 
incremental explained variance in the outcome due to X2. The squared semi-part 
correlation for X3 is how much the squared correlation increases when Y is predicted 
from X1, X2 and X3 as opposed to being predicted from just X1 and X2. It represents the 
incremental explained variance in the outcome due to X2. This index is sometimes 
referred to as the usefulness of a predictor. The index is problematic because it ignores all 
the explained variance that is common to the predictors, focusing only on unique 
variance. Many methodologists feel that the common explained variance should be 
strategically factored in as well, but how best to do so is controversial (Grömping, 2015). 
A general mathematical property that is often sought for indices of relative importance is 
that the sum of the importance scores across all predictors equal the overall squared 
multiple correlation of the full equation (i.e., the index represents a form of variance 
decomposition). Squared semi-part correlations do not have this property.  

Platt Index 

Another index of relative importance is the Pratt index (Pratt, 1987). This index 
multiplies the standardized regression coefficient for a predictor by the correlation of the 
predictor with the outcome. Although this may seem odd, the index has interesting 
properties. The correlation can be thought of as an index of the “total effect” of the 
predictor on the outcome, including both unique effects the predictor has as well as 
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effects that are common to the other predictors (i.e., common explained variance). The 
standardized regression coefficient for a predictor reflects a “partialled effect” because it 
is the estimated effect of the predictor on the outcome holding constant all other 
predictors. The Platt index is, in essence, the total effect of the predictor weighted by its 
unique effect net the other predictors. Interestingly, the sum of the Platt values across all 
predictors will equal the overall squared multiple correlation, a desirable property for an 
index of relative importance.  

The Platt index has been criticized on several grounds. First, all of the limitations 
described for standardized regression coefficients apply to the Platt index because it is 
based, in part, on standardized coefficients. Second, the Platt value for a predictor can be 
zero or near zero even when its total effect is substantial, which is somewhat counter-
intuitive. If the correlation with the outcome for a predictor is large but the standardized 
regression coefficient is small due to collinearity, the relative importance value for the 
predictor will be small. More generally, if one of the components of the Platt product 
index is low, the index downweights considerably the contribution of the other 
component. Third, the correlation and regression coefficient for a predictor must be equal 
in sign or else a negative Platt value results, which is nonsensical. The index is intended 
to reflect the contribution of the predictor to the overall squared R and the lowest value it 
should take is zero. Sign reversals between correlations and regression coefficients 
typically occur in the presence of suppression dynamics (see Cohen, Cohen, West & 
Aiken, 2003). However, there are cases where suppressor effects can be subtle, leaving 
investigators scratching their heads about what to make of a negative Platt value. For 
example, suppose we have five predictors, each correlated 0.30 with one another. 
Suppose the correlations between the predictors and the outcome are X1 = 0.40, X2 = 
0.50, X3 = 0.20, X4 = 0.40, X5 = 0.50. The standardized regression coefficient for X3 in 
this case will equal -0.10, so its Platt index will be negative.  

Stepwise Regression 

Another approach to gaining perspectives on the relative importance of predictors uses 
stepwise regression. It yields a rank order index of relative importance. With this method, 
a regression equation is formed consisting of one predictor and then predictors are 
successively added (or removed) in “steps” until a criterion (described below) is reached. 
The first predictor that is entered into the equation is the one with the highest zero order 
correlation with the outcome. The second predictor is the one that yields the largest 
increase in the squared multiple correlation relative to the predictor already in the 
equation. Once the second predictor is entered, a test of significance is performed to 
determine if the coefficient for the first predictor remains statistically significant. If not, it 
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is dropped, This sequential adding of predictors followed by re-evaluation of statistical 
significance of entered predictors continues until either all predictors have been entered 
into the equation or until the only remaining predictors do not produce a statistically 
significant increase in the squared multiple correlation. The variables in the final equation 
are designated as “important;” the variables that did not enter the final equation are 
deemed “unimportant.” The order in which variables entered the final equation 
determines the relative importance of the predictor, with earlier entry reflecting greater 
import. For a detailed description of the method, see Cohen et al., (2003). 
 This method has fallen into disrepute. One major problem is that the significance 
tests associated with the method are biased. They do not use the appropriate degrees of 
freedom (see Thompson, 1995, for details) and the statistical theory underlying such tests 
in intractable (Cohen et al., 2003). Relatedly, the predictor selected for entry at a given 
step is conditional on the variance contributions of the predictors already entered into the 
equation. Different entry orders will occur depending on the predictor that enters the 
equation first. The variable that enters the equation first can be heavily impacted by 
sampling error. Predictor X2 might be slightly more highly correlated with the outcome 
than predictor X1 in the population, but because of sampling error, predictor X1 might be 
slightly more highly correlated with the outcome than predictor X2 in the sample data. 
Given that results at subsequent steps are dependent on the predictors entered at prior 
steps, the results of stepwise analysis can be different purely from sampling error. This 
can be overcome by using large N, but doing so does not solve other problems with the 
method including the misleading nature of the p values and significance tests (Thompson, 
1995), bias in the regression coefficients (Tibshirani, 1996), and a general failure of the 
approach to accurately identify variables in the true generating function for outcomes 
(Derksen & Keselman, 1992; Mantel, 1970). We do not recommend this approach.   

Orthogonalization Methods 

Yet another class of indices to assess the relative importance of predictors uses 
orthogonalization strategies, the most popular of which is a method known as relative 
weight analysis (Johnson, 2000; Johnson & LeBreton, 2004; see also Genizi, 1993). In 
multiple regression, when all the predictors are uncorrelated, the standardized regression 
coefficient for a given predictor will equal its correlation with the outcome and the 
squared multiple correlation will equal the sum of the square of the correlations between 
each predictor and the outcome. Orthogonalization methods transform the predictors 
(which are typically correlated) so that they are uncorrelated and satisfy these properties. 
More specifically, relative weight analysis uses principal components analysis as the 
basis for score transformation, generating a predicted score for each individual for each 
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orthogonal principal component (see the primer on factor analysis for details). These 
component scores, as a collective, retain their predictive power of the outcome. The 
component scores are then subjected to two forms of regression analysis: (1) an analysis 
that regresses the outcome onto each of the component scores, and (2) an analysis that 
regresses each predictor (separately) onto the component scores. The relative importance 
weight for a given predictor is a function of the squared regression coefficients in the first 
analysis and the squared regression coefficients in the second analysis (see Johnson, 
2000, for details). The relative importance scores when summed across predictors will 
equal the squared multiple correlation. The scores usually are divided by the squared R 
and then multiplied by 100 so that the relative importance metric ranges from 0 to 100. A 
given score represents the percent of contribution of the predictor to the squared multiple 
correlation.  

A weakness of the relative weight approach is that its results can be influenced by 
the type of orthogonalization method used. A strength is that it often yields results very 
similar to dominance analysis (probably the best method available – see below) but it can 
be used with a large number of predictors, which is not the case for dominance analysis. 

A related orthogonalization method is the CAR index (Zuber & Strimmer, 2011; 
CAR is an abbreviation for “correlation-adjusted (marginal) correlations”). This approach 
achieves uncorrelated predictor representations using what is known as the Mahalanobis 
transform (Genizi, 1993), the technical details of which are beyond the scope of this 
primer. Interested readers should consult Zuber and Strimmer (2011). The CAR index for 
a predictor is the correlation between the outcome and the decorrelated predictors. When 
these correlations are squared and summed across predictors, the result will equal the 
overall squared multiple correlation for the full equation.  

Dominance Analysis 

The final approach we discuss is that of dominance analysis, which is the method 
described in the main text. It is probably the best of the many approaches, but the other 
methods might be of interest depending on how one chooses to define relative 
importance. Dominance analysis uses an index of importance called general dominance 
and is based on the average increase in R2 for all subset models of equal size that include 
the predictor in question, X, relative to models that do not include it. The indices reflect 
the average unique explained variance contribution of X to the outcome across all 
possible subsets of independent variables. General dominance indices sum to the total R². 
Dominance analysis is the same as an approach suggested by Lindeman, Merenda and 
Gold (1980), so sometimes you will see it referred to as the LMG method.  

As an example, with 3 predictors, (X1, X2, and X3), one can calculate the increase 
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in R square that X1 yields over and above X2, that X1 yields over and above X3, and that 
X1 yields over and above X2 and X3 together. The average of these increases is the index 
of general dominance for X1. This is repeated for each predictor to yield that predictor’s 
dominance index. For the 4 predictor case, (X1, X2, X3, and X4), one calculates the 
increase in R square that X1 yields over and above X2, that X1 yields over and above X3, 
that X1 yields over and above X4, that X1 yields over and above X2 and X3 together, 
that X1 yields over and above X2 and X4 together, that X1 yields over and above X3 and 
X4 together and that X1 yields over and above X2, X3, and X4. The average of these 
increases is the index of general dominance for X1. Obviously, computations are intense 
for large numbers of predictors. As an example, for 20 predictors, the dominance method 
may take as long as 10 minutes to finish on a high-speed computer. Dominance analysis 
has the desirable property that the sum of the dominance scores across the predictors 
equals the full equation squared multiple correlation. It takes into account both total and 
unique effects and maps well onto rank orders of predictors that use fit indices other than 
the squared multiple correlation, such as Akaike‘s information criterion and the Bayesian 
information criterion (Azen & Budescu, 2003).  

In addition to general dominance, dominance analysis has been extended to specify 
other forms of dominance (Azen & Budescu, 2003). For example, a predictor completely 
dominates another predictor if across all submodels of the same size the former predictor 
always shows a larger unique variance contribution than the latter predictor. Conditional 
dominance of one predictor over another predictor occurs if the average incremental 
variance for the former predictor is larger than the latter predictor across all submodels of 
the same subset size. Grömping (2015) has identified several limitations of these more 
fine grained indices and recommends just working with the general dominance indices. 

THE PROBLEM OF SAMPLING ERROR 

The importance indices are, of course, subject to sampling error. It is helpful to calculate 
a confidence interval for the index for each predictor to provide a sense of the amount of 
sampling error that is operative. Given the complexity of the underlying statistical theory 
to do so, bootstrap methods typically are used to estimate such confidence intervals. The 
ASA software we recommend provides this option as well as an option to conduct formal 
statistical tests of the differences between the indices for any two predictors (see the 
worked examples document).  

Parenthetically, if you are willing to forego confidence intervals, then you can apply 
the relative importance methods to latent variable regression models that use structural 
equation modeling. To do so, you would use a standard SEM program to obtain an 
estimate of the covariance matrix among all the relevant latent variables. Then use the 
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ASA program option that uses the covariance matrix as input and enter the  matrix for the 
latent variables. The importance indices will be generated based on this covariance 
matrix, with confidence intervals omitted. 

COVARIATES 

Sometimes we want to compute importance indices for a set of target predictors while 
holding constant one or more covariates. For example, we might want to evaluate the 
relative importance of different beliefs about drinking alcohol on the intent to drink 
among recovering addicts, holding gender constant. In traditional regression analysis, 
such covariates are included in the prediction equation. However, we may want the 
relative importance indices computed only for a subset of the predictors, namely the 
(covariate adjusted) beliefs about drinking. Only a few of the approaches to indexing 
importance can accommodate this case. Dominance analysis is one of them.  

BINARY OUTCOMES 

When an outcome variable is binary, it is common to apply logistic or probit regression 
instead of ordinary least squares multiple regression. Analytic strategies for logit models 
have been developed for both dominance analysis and relative weight analysis (Azen & 
Traxel, 2009; Tonidandel & LeBreton, 2010). The ASA software does not include these 
options. However, logistic regression as an approach to analyzing binary outcomes has 
limitations (see the Appendix to this primer). An alternative is to analyze the data using a 
modified linear probability model with bootstrapped significance tests and confidence 
intervals, which is equivalent to using the standard regression modeling for dominance 
analysis and relative weight analysis offered by ASA (see the video accompanying this 
primer). For statistical details, see the Appendix.  

CONCLUDING COMMENTS 

A common question asked when conducting multiple regression analyses concerns the 
relative importance of the predictors in influencing or predicting the outcome. This is a 
difficult question to answer because much depends on what one means by the term 
“importance.” Some researchers use statistical significance as a basis for identifying 
important predictors but this strategy can be undermined by the use of sample sizes that 
yield low statistical power. Seven commonly used methods for ordering predictors in 
terms of their relative importance include standardized regression coefficients, zero order 
correlations, squared semi-part correlations, the Platt index, stepwise regression, 
orthogonalization methods, and dominance analysis. Of these methods, dominance 
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analysis is probably the most sound but it can be challenging to apply when there are a 
large number of predictors. When conducting dominance analysis, you often will want to 
take into account sampling error as well as covariates that serve as nuisance variables that 
are important to control.  
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APPENDIX: BINARY REGRESSION AND RELATIVE IMPORTANCE 

In this appendix, we assume you are familiar with the basics of logistic regression. We 
begin by reviewing the difference between odds and probabilities, to help put logit 
regression in context. Next, we discuss the concept of conditional probabilities as a way 
of introducing logistic regression and the linear probability model. Finally, we discuss 
marginal effects in binary regression and then develop the implications of marginal 
effects for relative importance analysis. 

Odds and Probabilities 

The fundamental construct of interest in binary regression is a probability, such as the 
probability of contracting a disease, the probability of being fired from a job, the 
probability of experiencing an unintended pregnancy, or the probability of getting 
married. Probabilities range from 0.00 (impossible) to 1.00 (certain). In binary regression 
they apply to populations of individuals. If we say that the probability that a 16 year old 
female adolescent living in the United States will experience an unintended pregnancy 
while she is 16 is 0.08, then this means that for this particular population of individuals, 
8% of them experience an unintended pregnancy and 92% of them do not. 

Another way of expressing a probability is using odds. We convert a probability to 
an odds by dividing it by 1 minus the probability in question. If the probability of 50 year 
old men in the United States seeing a doctor in the ensuing 12 months is 0.667, then the 
probability of not doing this is 1 - .667 = 0.333. The ratio of these two probabilities is the 
odds; 0.667 / 0.333 = 2.0, or in more common vernacular, the odds are “2 to 1” or it is 
twice as likely that 50 year old men living in the United States will see a doctor in the 
next 12 months than they won’t. 

An odds can be less than one. If the probability of a teenager smoking marijuana is 
0.20, the odds of a teenager smoking marijuana is 0.20/0.80 = 0.25. The odds value of 
0.25 means the probability of smoking marijuana is one fourth the probability of not 
smoking marijuana. If the probability of a Black man having a college degree is 0.25, the 
odds of a Black man having a college degree is 0.25./0.75 = 0.33. The odds value of 0.33 
means the probability of having a college degree is one third that of not having a college 
degree.  

Most of us are more comfortable with the concept of probability than odds, as the 
former are easily converted to percentages and we have more experience with them. 
Characterizing events in terms of probabilities is not “better” than using odds; they are 
just different ways of expressing the same thing. 

One can convert a probability to an odds by applying the formula P(Y) / (1-P(Y)), 
where P(Y) refers to the probability of Y. One can convert an odds to a probability by the 
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formula Odds(Y) / (1 + Odds(Y)). Also, the mean of a dichotomous variable scored 0-1 
will equal the proportion of scores that have a 1, which can be thought of as the 
probability of observing a 1. 

Binary Regression and the Modeling of Conditional Probabilities 

Suppose we are interested in modeling how the probability of some event occurring, Y, 
changes as a function of the values of one or more predictor variables, X. The most 
common regression models for doing so focus on conditional probabilities:  For a given 
predictor profile, we seek to specify what the probability of Y is. This conditional 
probability is represented as P(Y | X), or “the probability of Y given a value of X.”  The 
symbol  |  is read as “given that.” 

Consider the simple bivariate case where the outcome is the probability an 
adolescent will smoke marijuana in the ensuing year and the predictor is the age of 
adolescents, ranging from 12 to 17. We want to characterize what the probability of Y is 
for adolescents who are age 12, what it is for adolescents who are age 13, what it is for 
adolescents who are age 14, and so on (actually, age is a continuous variable, but for 
pedagogical reasons, we frame it here as discrete). Each age represents a different 
predictor “profile” and we seek to characterize P(Y | X) at each profile, i.e. P(Y | X=12), 
P(Y | X= 13), P(Y | X=14), and so on. 

If we have multiple predictors, then a “profile” refers to a specific combination of 
scores across the predictors. For example, if we predict the probability of marijuana use 
from age and gender, then one predictor profile is “12 year old males,” another predictor 
profile is “12 year old females,” and so on. We might seek to estimate the conditional 
probability P(Y | Age=12, Gender = Male), the probability P(Y | Age=12, Gender = 
Female), and so on.  

We can express how the probability of Y, in this case smoking marijuana, varies as 
a function of the predictor, age, using a simple linear equation: 

P(Yi)  =  α  +  β Xi 

where P(Yi) is the probability that the specified group of adolescents smokes marijuana in 
the next 12 months and Xi is the age group “i” of interest (e.g., 12 years old adolescents; 
13 year olds, and so on). As an example, suppose the (population) probabilities of 
smoking marijuana are as follows: 
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Age            P(Y) 
 
12   0.025 
13   0.050 
14   0.075 
15   0.100 
16   0.125 
17   0.150 
 
The probability of smoking marijuana is 0.025 conditional on age being 12. The 
probability of smoking marijuana is 0.050 conditional on age being 13. And so on. The 
intercept for this model is -0.275 and the slope is 0.025. Note for every one unit age 
increases, the probability of smoking marijuana increases by 0.025 units. The intercept is 
meaningless in this case because it refers to an age (the probability of Y when age = 0) 
that is outside the range of X values. 

Because the above relationship between age and the probability of smoking 
marijuana is linear, a reasonable model for analyzing the data is called the linear 
probability model, which explicitly assumes a linear relationship. An early strategy for 
implementing the linear probability model (LPM) was to use standard ordinary least 
squares (OLS) regression with a dichotomous outcome variable. This strategy capitalizes 
on the fact that the mean of a dichotomous variable scored 0-1 equals the proportion of 
scores that have a 1. The OLS approach is problematic, however, because for standard 
errors and confidence intervals to be correct, OLS requires (1) the population error scores 
for a given predictor profile be normally distributed (which is not the case for a 
dichotomous outcome), and (2) that the population error scores have equal variance 
across different predictor profiles (which also is not the case). One way of circumventing 
these parametric assumptions is to use bootstrapping to estimate confidence intervals and 
to conduct significance tests on the coefficients (see Mooney & Duval, 1993, for an 
introduction to bootstrapping). When such bootstrapping is used or when alternative 
forms of robust estimation are employed, the LPM is referred to as a modified linear 
probability model.  

Logistic regression does not model probabilities, but rather odds. To be more 
precise, it models the log of odds, not odds. Let the odds of Y be represented by Odds(Y). 
Recall Odds(Y) is the P(Y) divided by one minus this probability. The logistic model 
relates the log of the odds to X as follows:  

Log[Odds(Yi)]  =  α  +  β Xi 
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where log is the natural logarithm. This model posits that the log of the odds of Y is a 
linear function of X, whereas the linear probability model states that the probability of Y, 
not the log odds of Y, is a linear function of X. By modeling the log of odds as a linear 
function of X, the logistic model implies a non-linear relationship between (continuous) 
X and the probability of Y. Consider our prior example with age and the probability of 
smoking marijuana, where we convert the probabilities to log odds: 
 
Age            P(Y)  Odds(Y)  ln(Odds(Y)) 
 
12   0.025   0.0256     -3.665 
13   0.050   0.0526     -2.945 
14   0.075   0.0811     -2.512 
15   0.100   0.1111     -2.197 
16   0.125   0.1429     -1.946 
17   0.150   0.1765     -1.734 
 
Note in this case, that age is not linearly related to the log odds of Y. The logistic model 
is misspecified and not appropriate for these data. If age was linearly related to the log 
odds of Y, then it would not be linearly related to P(Y). In this sense, the logistic model is 
often called a non-linear model. As will be seen, the non-linear nature of logistic 
regression introduces challenges if your primary focus is on probabilities.  

Marginal Effects 

Statisticians often make use of a concept known as a marginal effect in binary regression. 
A marginal effect is the rate of change for the probability of an outcome given a one unit 
increase in a predictor. Consider the following linear probability model predicting 
marijuana use from gender and age: 

Prob(Marijuana) = α1 + β1 G + β2 Age 

For gender, the rate of change in the probability of Y is equal to β1 when gender is 
dummy coded. Note that this model assumes that the effect of gender on the probability 
of Y is the same at each age level and also equals the value of β1. If this were not the 
case, we would need to include an interaction term between gender and age. As well, if 
we average these gender effects for each age group, we also will obtain the value of β1. 
The marginal effect for gender is thus β1. 

Similarly, the marginal effect for age equals the value of β2. The effect of age on the 
probability of Y is assumed to be the same for males and females, otherwise we would 
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need an interaction term. If we average the age effects for males and for females, we will 
obtain the value of β2. The marginal effect for gender is thus β1. 

For logistic regression, the marginal effect is more complicated because logistic 
regression models log odds not probabilities. It turns out that in a logit analysis that 
regresses marijuana smoking onto gender and age, the effect of gender on the probability 
of smoking marijuana will differ depending on the age of the adolescent even though we 
do not include an interaction term between gender and age in the model. We thus cannot 
derive the marginal effect for gender from the logistic coefficients. Nevertheless, 
researchers often are interested in knowing the value of such marginal effects.   

We can give an intuitive sense of how one calculates a marginal effect in logistic 
regression using gender from the above example. First, we calculate the logistic equation 
using standard statistical software. Next, we consider the first case in the data set. We 
treat that person as a male irrespective of what that person’s gender actually is. The 
person’s scores on all the other predictor variables in the equation are left alone but we 
set the gender score to “male” and then calculate the predicted probability of smoking 
marijuana for that person based on that person’s predictor profile in the derived logistic 
equation. Essentially, we assume the person has the same scores s/he had on the other 
predictors but that s/he is a male irrespective of his or her actual gender. We then repeat 
this process, but this time we presume the person is female irrespective of the person’s 
actual gender. We calculate the predicted probability of the outcome for this person using 
the original logistic equation under this scenario. The difference between the two 
calculated probabilities is the marginal effect for that particular individual. We repeat this 
process for every individual in the sample, calculating a marginal effect for each one. 
Finally, we compute the average of all these individualized marginal effects. The result is 
the marginal effect. In essence, we are comparing two populations, one that is all male 
and one that is all female, but where each population has the same distribution of values 
on the other predictors in the model. Because the only difference between the two 
populations is their gender, the logic goes, gender is the source of the differences in their 
likelihood of having smoked marijuana. Hence, this is the marginal effect for gender. 

For continuous predictors, such as age, the same logic is used, but one calculates 
how the probability of the outcome changes given a one unit change in the continuous 
predictor based on each observed value of age while all other predictors are left equal to 
their observed values. The average of these individual changes is the marginal effect. 

It turns out, that the marginal effect for a predictor in a logistic regression usually is 
very close in value to what the marginal effect for that predictor is in the linear 
probability model. Angrist and Pischke (2009) argue that, given this, it often is much 
simpler to calculate marginal effects using the modified linear probability model rather 
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than engaging in all the gymnastics of calculating the marginal effects in logistic 
regression. One basically will get the same results, they argue, but more efficiently.  

Implications for Relative Importance Analysis 

The implications of the above for relative importance analysis is that one usually can just 
use traditional linear regression to model binary outcomes given a focus on outcome 
probabilities (which is usually what we are interested in). The importance indices 
generally derived as such generally will be unbiased and, because their confidence 
intervals and significance tests are based on bootstrapping, the violation of population 
assumptions will not be problematic. One usually will not need to use specialized logistic 
models for relative importance analysis. 


