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Factor Analysis 
 

This primer focuses on factor analysis. We assume you have read the section on factor 
analysis in Chapter 11, but we repeat parts of it here to set context. We also assume you 
are familiar with multiple regression and have had at least superficial exposure to the 
method of factor analysis. We first present the basics of factor analysis and distinguish it 
from principal components analysis, the latter of which is often confused with factor 
analysis. We then distinguish exploratory from confirmatory factor analysis and discuss 
the concepts of communalities and uniqueness. We next describe different fit functions 
that are used when performing factor analysis followed by a discussion of the problem of 
indeterminacy. After touching upon factor rotation, we discuss how to determine how 
well a factor model accounts for the correlational pattern among the target variables in 
question. Finally, we discuss a range of issues relevant to factor analysis, including how 
to interpret factor loadings, the use of factor scores, major and minor factors, sample size, 
and the use of dichotomous and ordinal variables in factor analysis.  

THE BASICS OF FACTOR ANALYSIS 

Factor analysis is an analytic method that seeks to explain the correlations between 
variables by reference to some unmeasured variable (called a “factor”) that is presumed 
to be a common cause of the measured variables. Figure 6.1 presents an example where 
the correlations between six variables (X1 though X6) are thought to be due to a single 
underlying factor, also called a latent variable, that impacts each observed variable. Each 
variable also has unique variance associated with it that is independent of the factor – see 
the us in Figure 6.1. A classic example of factor analysis is where the observed measures 
reflect different types of mental abilities of children (such as spatial ability, verbal ability, 
math ability, and reading ability) and the correlations between them are thought to be due 
to the common influence of general intelligence (see F in Figure 6.1). A way of thinking 
about factor analysis is that there exists a “mystery variable” that if it was measured and 
partialled out of each observed variable, the correlations between the observed variables 
would all be reduced to zero. In this sense, the factor, aka the mystery variable, explains 
the variable correlations.  
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FIGURE 6.1. Single Factor Model 
 

The Ls in Figure 6.1 are called factor loadings. They are regression coefficients that 
reflect the magnitude of the impact of F on each X. They typically are reported in 
standardized form, so that a loading equal to 0.50 means that for every one standard 
deviation that F increases, X is predicted to increase, on average, by 0.50 standard 
deviations.1 A challenge in factor analysis is to estimate the values of the L given that we 
have no direct measure of F; without a direct measure of F, we can’t actually regress X1 
onto F, nor can we regress X2 onto F, and so on. Indeed, we often do not even know what 
F is substantively. Here, we presumed it was general intelligence.  

If a single factor model holds, there should be certain regularities in the correlation 
matrix for the observed variables and the factor loadings. It can be shown 
mathematically, for example, that the correlation between any two variables (e.g., X1 and 
X2) must equal the product of their standardized factor loadings: 

rXi,Xj = (LXi,F) (LXj,F) 

Given this, it should be possible to specify a set of values for each of the factor loadings 
that will reproduce the observed correlations between all the variables considered as a 
collective. Suppose we specify the factor loading for the first variable is 0.50, for the 
second variable it is 0.60, and for the third variable it is 0.70. If the single factor model 
holds, the product of any pair of loadings should reproduce the correlations between that 
                                                 
1 In this primer, we adopt notation for loadings using conventions for causal paths; the first variable in the subscript 
for L is the presumed “effect” and the second variable is the presumed “cause.”   
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pair of variables. For example, for the first two variables the product of the two factor 
loadings, (0.50)(0.60) = 0.30. The product of the loadings for variables 1 and 3 is  
(0.50)(0.70) = 0.35; and the product of the loadings for variables 2 and 3 equals 
(0.60)(0.70) = 0.42. The product of the relevant factor loadings for a pair of variables is 
called a predicted correlation for those variables and the actual calculated correlation is 
called an observed correlation. The task of the factor analyst is to find a set of factor 
loading values that do a good job of reproducing the observed correlations as reflected by 
the   predicted correlations. As long as a one factor model truly operates per Figure 6.1, 
this should be possible to do, though the task is not necessarily a simple one. If it is not 
possible to find good fitting values for the factor loadings, then perhaps the one factor 
model may not be viable. We might need an alternative explanatory model for the 
correlations, such as a two factor model or a three factor model. 

For the case of a two factor model, we again seek to explain the observed 
correlations between the variables by making reference to underlying factors but now we 
state there are two latent common causes rather than one. An example appears in Figure 
6.2. Although the mathematics are more complicated, the basic logic is similar to that 
described above: The two factor model is used as a framework to generate a set of 
predicted correlations between all possible pairs of variables based upon mathematically 
derived L values. These predicted correlations are then compared with the observed 
correlations. If there is correspondence between the predicted and observed correlations, 
this suggests the two factor model is viable. If there are large discrepancies, than a two 
factor model is called into question and the researcher might then consider a three factor 
model as a potential descriptor of the underlying theory accounting for the correlations.  

Suppose we find a good model fit for a two factor model. We might then conclude 
that a single factor or “mystery variable” is not sufficient to reduce the correlations 
among the observed measures to zero if it is partialled out of them. Rather, two such 
variables are required. That is, if we were able to obtain measures of the two factors and 
we partialled both of them out of the observed variables, all of the observed correlations 
would reduce to zero. If a two factor model also failed to account well for the 
correlations, we might resort to a three factor model to account for them and if that failed, 
we might then consider a four factor model. A central task of factor analysis is to 
determine the number of factors that are necessary to adequately account for the 
correlations among the variables. 
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FIGURE 6.3. Two Factor Model 
 
When statisticians try to find values of L that maximize the correspondence 

between predicted and observed correlations, there are different strategies they use. One 
strategy seeks to find L values that minimize what is known as an unweighted least 
squares criterion. Values of L are sought that minimize the sum of the squared 
discrepancies between the predicted and observed correlations. This is analogous to the 
least squares criterion in multiple regression, but it is applied to predicted and observed 
correlations rather than predicted and observed scores for individuals. The general term 
for a minimization criterion is a fit function, or alternatively, a discrepancy function. The 
unweighted least squares criterion is one of many fit functions. We discuss others below 

The process of finding optimal L values typically uses a trial-and-error approach. 
An initial set of L values is tried in an attempt to minimize the fit function (in this case, 
unweighted least squares).  Then, another set of L values is tried to see if it improves 
upon the first set.  Then yet another set is tried. At each iteration, one examines the sum 
of the squared discrepancies between the predicted and observed correlations that the 
particular L values produced. The search continues until one finds a set of L values that 
provide the lowest value of the fit function one is likely to find it, i.e., they yield the best 
reproduction of the observed correlations. These are the set of loadings one uses. The 
entire search process is called an iterative process.  

As an example, suppose we fit a one factor model to a 6 variable correlation matrix 
and the fit function yields the loading estimates in Figure 6.3. Each loading has a value of 
0.50 (in practice, the loadings need not be equal). According to the fitted model and the 
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estimated loadings, the correlation between X1 and X2 should be (0.50)(0.50) = 0.25. 
The correlation between X1 and X6 should also be 0.25. Indeed, the model predicts that 
the correlation between every pair of variables should be 0.25. Suppose the actual 
correlation matrix is that shown in Table 1. You can see that the observed correlations are 
close in value to the predicted correlations. Stated another way, the data seem to be 
reasonably consistent with a one factor model. The residual matrix is calculated by 
subtracting each element of the predicted matrix from that of the observed matrix (see 
Table 1). The entries of the matrix all are near zero, suggesting a good model fit. An 
important part of evaluating a factor model is to examine the residual matrix 

 

X1 X2 X3 X4 X5 X6

Factor (F)
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FIGURE 6.3. Results for Single Factor Model 

Table 1: Observed and Predicted Correlations 
 
      Observed                         Predicted 
 
 X1 X2 X3 X4 X5 X6  X1 X2 X3 X4 X5 X6 
              
X1    - 0.26 0.25 0.24 0.26 0.25     - 0.25 0.25 0.25 0.25 0.25 
X2 0.26    - 0.24 0.26 0.25 0.24  0.25    - 0.25 0.25 0.25 0.25 
X3 0.25 0.24    - 0.27 0.25 0.23  0.25 0.25    - 0.25 0.25 0.25 
X4 0.24 0.26 0.27    - 0.28 0.22  0.25 0.25 0.25    - 0.25 0.25 
X5 0.26 0.25 0.25 0.28    - 0.25  0.25 0.25 0.25 0.25    - 0.26 
X6 0.25 0.24 0.23 0.22 0.25    -  0.25 0.25 0.25 0.25 0.25    - 
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                                                                   Residual  
 

 X1 X2 X3 X4 X5 X6 
       
X1    - .01 .00 -.01 .01 0.00 
X2 .01    - -.01 .01 .00 -.01 
X3 .00 -.01    - .02 .00 -.02 
X4 -.01 .01 .02    - .03 -.03 
X5 .01 .00 .00 .03    - .00 
X6 .00 -.01 -.02 -.03 .00    - 

 

If we calculate the average value in the residual matrix to index model fit, the result 
will always be zero or near zero because the positive residuals cancel the negative 
residuals. A better index takes the form of a root mean square residual. This index 
squares each residual, averages these squared residuals, and then returns the squared 
average to its original correlation metric by taking the square root of that average. A root 
mean square residual of 0.05 means that the “average” disparity between the predicted 
and observed correlations was 0.05. It is just that the average is a different type of 
average than the arithmetic average you are more familiar with (specifically, it is a 
positive root mean square average). The root means square residual maps roughly onto 
the logic of the unweighted least squares fit function. A model with a large root mean 
square residual is judged problematic and rejected as a good descriptor of the data. 
Standards differ but root mean square residuals less than 0.05 or so often are deemed 
reasonable (we return to this issue later). For the above matrix, it is 0.015.  

Principal components analysis (PCA) is different from factor analysis in that it does 
not seek to explain correlations between variables. Rather the goal is to reduce the 
observed measures to a smaller number of linear combinations of them so that the linear 
combinations or “summaries” can then be used in this reduced form for other analyses. It 
is a data reduction method whereas factor analysis is a method designed to explain 
correlations. These goals are different. A diagram for PCA appears in Figure 6.4. In this 
case, we seek a linear combination of X1 through X6 that captures as much variation in 
the six measures considered collectively as possible so that we can represent that 
variation in a more parsimonious way. The linear combination has the form 

C = LC,X1  (X1) +  LC,X2  (X2) +  LC,X3  (X3) +  LC,X4  (X4) +  LC,X5  (X5) +  LC,X6  (X6) 

where C is the summary score for the observed measures. The task is to define weights 
(the various L) that capture the multivariate variability across individuals in the six Xs. 
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FIGURE 6.4. Principal Components Model with Single Component 

 
Sometimes, capturing the variation in the Xs cannot be well accomplished using a 

single linear combination of them; too little of that variation is represented by a single 
component. In such cases, we define a second linear combination of the variables in 
addition to the first linear combination but this time using a different set of weights. The 
new weights are derived under the constraint that the scores on the second component be 
uncorrelated with scores on the second component so as to maximize information gain. 
This represents a “two component” principal component model rather than a “single 
component” principal component model. If two components do not capture the 
multivariate variability sufficiently, a third component might be sought. And so on.  
 As an example, we might want to develop computerized algorithms for facial 
recognition based on the measurement of 30 different features of a face, such as the width 
of the mouth, the width of the eyes, and the pupil to pupil distance. The idea is to match 
faces of new customers recorded on a camera to a prior data base of pictures of people 
who have previously entered the store. Rather than working with all 30 scores for each 
new person who enters the store, it might be more efficient to form three or four linear 
combinations of those features that take into account their correlational structure and 
variability. By then working with just these “principal components” of the 30 features, 
the time it takes to process a face and to match it to a reference list of faces with names 
can be reduced substantially. We might find that it requires four (uncorrelated) principal 
components to adequately capture the multivariate representations of the 30 features. We 
then work with those four derived variables in our computer algorithm.  

The focus of this primer is on factor analysis, not principal components analysis.  
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EXPLORATORY AND CONFIRMATORY FACTOR ANALYSIS 

Methodologists distinguish two types of factor analysis, exploratory and confirmatory. In 
exploratory factor analysis (EFA), one seeks to understand the correlations between 
variables by determining the number and the nature of common-cause variables (factors). 
The researcher lacks a theory about the number of factors and which variables in the set 
of X variables the factors influence. The focus is on finding this out. By contrast, in 
confirmatory factor analysis (CFA), researchers have a strong theory that dictates the 
number of factors that can account for the correlations among the X and whether each 
factor impacts each observed variable. In CFA, theorists specify a specific pattern of zero 
and nonzero loadings or they might specify competing models to compare that make such 
specifications. The goal in CFA is to apply factor analysis to formally test theory.  

One way of thinking about EFA is that it is a useful method when the number of 
plausible factor models for explaining the correlations among the X is so large that it is 
impractical to test each one in a CFA framework. EFA helps to narrow the field of 
plausible factor models. It also may be that researchers pursuing CFA could fail to 
specify plausible alternative models that would be identified in an initial EFA. In this 
sense, EFA might be applied as a preliminary step to a more formal CFA-like effort to 
identify plausible models to evaluate (although care must be taken in doing so because 
such preliminary analyses can affect the statistical theory underlying significance tests 
when both the EFA and CFA are applied to the same data). 

EFA and CFA have been merged into an analytic framework known as exploratory 
structural equation modeling (Asparouhov & Muthén, 2009; Marsh et al., 2010). In this 
framework, researchers are reasonably confident of the number of factors that underlie a 
set of X but are uncertain about how each factor impacts the various X. Given the latter 
uncertainty, paths/loadings are allowed to each X from each factor (like EFA, per Figure 
6.2). The factor model is often embedded in a broader theoretical network that includes 
other covariates, outcomes, and mediators to allow the traditional EFA to be more fully 
informed by its larger nomological context. Model estimation and evaluation is pursued 
in the context of this larger, richer network of variables.  

POPULATION AND SAMPLE MODELS 

Suppose in a population a one factor model perfectly accounts for the correlations 
between a set of variables. When we select a sample from that population and test a one 
factor model, the data likely will deviate from perfect model fit because of sampling 
error, hopefully not by much. Brown and Cudek (1993) and MaCullum (2007) have 
noted that sometimes a population model will technically be wrong when applied to 
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population data but the approximation will be quite close. Although population data may 
not conform exactly to a one factor model, for example, it may be close enough that one 
can safely use it as a reasonable representation of the true population model. In the words 
of the statistician George Box “all models are wrong, but some are useful.” We return to 
this point in some depth later, but we want to establish the basic idea here. The use of 
such approximate population models is somewhat controversial but many argue that 
working with approximate models in populations is both reasonable and realistic.  

COMMUNALITIES AND UNIQUENESS IN FACTOR ANALYSIS 

In factor analysis, distinctions are made between common variance and unique variance 
for each X variable. Common variance (also called communality) refers to the variation in 
a given X that is due to the underlying factor(s). Unique variance (or uniqueness) is the 
variation in a given X that is not due to the underlying factor(s). It represents variance 
that is “unique” to that variable. The communality and uniqueness indices sum to 1.0 
when expressed in standardized form. Their values represent, respectively, the proportion 
of variation due to the factor(s) and the proportion of variation that is unique. In general, 
a variable that is uncorrelated or weakly correlated with other variables in the set of X 
will have high uniqueness and low communality. A variable that is highly correlated with 
other variables in the set of X will have low uniqueness and high communality.  

Factor analysis when applied to sample data estimates the population values for 
communality and uniqueness for each X. Most factor analysis algorithms require working 
with an initial estimate of communality for each variable during the iteration process. The 
initial estimate usually is the squared multiple correlation that predicts X from all the 
other X in the set. Technically, this squared multiple correlation is not the communality 
of X per se, but it is a “ballpark” initial estimate that is used during the iterative process. 
Parenthetically, whereas factor analysis seeks to partition the variance of a variable into 
unique and common variance, this is not a goal of principal components analysis. PCA 
makes no distinction between common and unique variance.  

In our initial presentation, we stated that a goal of factor analysis is to “explain” 
correlations between variables. Actually, it has multiple goals with a second goal being to 
document the communality and uniqueness of each variable in the population. When 
deriving values of L that best reproduce the correlation matrix, the algorithms also seek 
to define the L so that they best reflect the true communality of each variable in the 
population. To accomplish this, the algorithms do not analyze correlation matrices per se. 
Rather, they analyze correlation matrices with estimates of communalities in place of the 
ones in the diagonal of the correlation matrix. We do not delve into the underlying 
mathematics as to why (see Mulaik, 2009). The correlation matrix with communalities in 
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the diagonals is often referred to as the reduced correlation matrix. 
Knowing the communality and uniqueness of a variable is important for reasons we 

develop later. Suffice it to say here that one will orient towards a variable differently on a 
substantive level if it is relatively distinct from other variables in the variable set (high 
uniqueness) than if it is dominated by the factors that underlie it (high communality) 

When exploratory factor analysis is applied to variables that have low 
communalities, then analytic complications can result that lead to mischaracterizations of 
the true population factor model (MacCallum et al., 1999). You should try not to analyze 
variables that are too dominated by unique variance. In ways, very large amounts of 
unique variance for a variable suggest the variable may be unrelated to the domain of 
interest because it has little in common with other variables in that domain. Perhaps such 
a variable should not be in the theoretical mix. In this sense, it is important for theory and 
common sense to guide the selection of variables to focus a factor analytic study on.2   

FIT FUNCTIONS 

When deriving values for the factor loadings that best reproduce the communalities and 
correlations, many different analytic algorithms can be used. For algorithms that use 
iterations, the choice of loading values on a given iteration is not random. Rather, it is a 
very intelligent search process that quickly zeros in on the values that will produce the 
best possible fit to the data given the model. Once it is determined that the best possible 
fit has been achieved, the iterative process stops. The solution is said to have converged. 
Many computer programs set a limit on the number of iterations that a program can try. 
Sometimes it is necessary to override this default and set the number of iterations higher. 
On the other hand, if a program is having difficulty converging on a solution, it may 
signify that something is amiss with the model being tested.  

There are several fit functions one can use to define the factor loadings and evaluate 
model fit. As noted, the unweighted least squares approach defines values of L that 
minimize the sum of the squared deviations between predicted and observed correlations. 
Specifically, we seek to minimize  

Σ (rij – r̂ij)2 

where r is the observed correlation and r̂ is the predicted correlation. This index can be 
generalized to what is known as a weighted least squares formulation that adds a weight 
to each residual, as follows: 

                                                 
2 Another source of unwanted unique variance is measure unreliability. Measures with low reliability should 
generally be avoided in factor analyses.  



                                                                                                                               Factor Analysis    11 

 
 

Σ wij (rij – r̂ij)2 

Note that if the weight is set to 1.0 for all residuals, the expression reduces to the 
unweighted least squares criterion (also called ordinary least squares). By introducing 
weights, one can allow for some residuals to have more influence than others in the 
calculation of the L. There are different ways of defining the weights but the most 
common one assigns weights in a way that gives less weight to variables with low 
communalities. Another weighting scheme, called generalized least squares, assigns 
weights in a way that gives even less weight to variables with low communalities than 
traditional weighted least squares. For details, see Muthén et al. (1997) and Joreskog and 
Goldberger (1972). An unweighted least squares approach called minres focuses only on 
the off-diagonal elements of the correlation matrix when deriving estimates of L, i.e., it 
ignores communalities during the estimation process. To be sure, it ultimately estimates 
communalities but it does not use communality estimates in the derivation of L. Some 
methodologists view this as a disadvantage but others see it as an advantage as it 
circumvents convergence and analytic problems that can arise with more traditional 
methods (see Revelle, 2015). Minres tends to yield L estimates that are close to the next 
fit function I discuss, called the maximum likelihood fit function. 

A very popular fit function is maximum likelihood. In this approach, one minimizes 
the following: 

FML= ln |S'| - ln |Ŝ| + trace[(S)(Ŝ'-1)] - k 

where S is the covariance/correlation matrix, Ŝ' is the predicted covariance/correlation 
matrix by the model, k is the number of variables in the matrix, ln is the natural log 
function and |  | signifies the determinant of the matrix between the two bars.3  Although 
it appears formidable, the maximum likelihood fit function is straightforward if one 
knows matrix algebra. Consider, for example, the case where there is perfect model fit 
and S' equals Ŝ. In this case, the determinant of S will equal the determinant of Ŝ' and the 
difference between the logs of these determinants in the first part of the right hand side of 
the equation will equal 0. If S = Ŝ', then (S)(Ŝ'-1) in the equation equals (S)(Ŝ-1). In matrix 
algebra, any matrix multiplied by its inverse equals an identity matrix, which is a matrix 
that has the same number of rows and columns of the matrix being operated on but with 
all 1s in the diagonal and all zeros in the off-diagonal. The trace function sums the 
diagonal elements of a matrix, the result of which, for a perfect fitting model, will be the 
sum of the diagonal elements of an identity matrix, the value of which must be k. 

                                                 
3 The determinant of a covariance matrix is a complex set of operations that yield an overall index of multivariate 
variability. See Namboodiri (1984). 
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Subtracting k from this value yields zero. Thus, when there is perfect model fit, FML 
equals zero. As model fit becomes worse, values of FML become larger. 
  One reason to minimize FML is that doing so yields results with many useful 
statistical properties. For example, with the assumption of multivariate normality among 
the X, one can calculate significance tests for model fit and standard errors for factor 
loadings that otherwise are mathematically intractable. We discuss these tests below. 
Despite its desirable properties, there are cases where maximum likelihood is ill-behaved 
(Revelle, 2015; Mulaik, 2008) and other methods (e.g., minres) are preferable. 
  A final method of factor analysis we want to mention is called principal axis factor 
analysis. This approach applies the same statistical algorithms as principal components 
analysis but uses communality estimates in the diagonal of the correlation matrix (hence, 
it is formally a factor analytic model). The approach is similar to unweighted least 
squares (ULS) and minres, but its results are differentially conditional on prior estimates 
of communalities during the iterative process. Minres generally outperforms it. 
MacCallum (2009) goes so far as to declare principal axis factor analysis obsolete 
  Which fit function to use is open to debate. Current wisdom favors the maximum 
likelihood method because it has a well-developed underlying statistical theory. 
Maximum likelihood loses some of its advantages when data are non-trivially non-
normally distributed, but the method has been found to be reasonably robust to violations 
of the assumption (Joreskog, 2007). In a simulation study, Olsson et al., (2000) compared 
maximum likelihood, generalized least squares, and weighted least squares for accurately 
characterizing model fit and population parameters for different sample sizes, 
specification error, and non-normality. They found that maximum likelihood as compared 
to generalized least squares provided more accurate indices of overall fit and less biased 
parameter values. Weighted least squares, despite recommendations in the literature to 
use it with non-normal data, never outperformed maximum likelihood or generalized 
least squares. Similar results were reported by Olson, Foss and Breivik (2004). Some 
simulation studies have found that ULS/minres recovers population factor structures 
better than maximum likelihood when the population model is dominated by weak 
common factors (MaCullum, 2009). However, the accuracy of standard errors and p 
values for ULS and minres is on weaker grounds compared to maximum likelihood (but 
see Bentler & Savalei, 2010). All things considered, maximum likelihood usually is the 
extraction method of choice, but there are exceptions.  

MULTIPLE FACTORS AND INDETERMINANCY 

In scenarios where one tests a factor model with more than one factor and each factor has 
a causal path to each X, the factor model is indeterminant (or, using different jargon, it is 



                                                                                                                               Factor Analysis    13 

 
 

underidentified). This means there is more than one set of factor loadings, L, that will 
produce the smallest residual discrepancy index when reproducing the correlation matrix. 
The issue then becomes which alternative solution to use because they all perform 
equally well. Statisticians have developed criteria for choosing among the different 
solutions that are referred to as identification conditions. The conditions focus on how 
loadings relate to the eigenvalues and eigenvectors of the reduced correlation matrix and 
are designed to maximize certain desirable statistical properties.4  The conditions include 
(a) the first common factor must account for the most variance in the X, (b) the second 
factor must be orthogonal to the first factor, with this property of orthogonality applying 
to all subsequent factors as well, and (c) the largest eigenvalue must equal the variance 
explained by the first factor, the next largest eigenvalue must equal the variance 
explained by the second factor, and so on. Even with such restrictions, there still exist 
more than one set of loadings that produce the smallest residuals in the residual matrix. 
At this point, loading interpretability becomes an additional criterion for selecting the 
final loadings as does the possibility of relaxing the requirement of factor orthogonality, 
both of which are accomplished using factor rotation, my next topic. For statistical details 
about identification conditions, see Bollen (1989), Gorsuch (1983) and Harmen (1976). 

The indeterminant nature of exploratory factor analysis is an issue that has 
generated heated debate about the utility of factor analysis more generally. We defer 
discussion of this issue until after we discuss factor rotation.  

FACTOR ROTATION 

Suppose we fit a two factor model to a set of data and conclude that it provides good data 
fit. We can conclude from this that the correlational pattern among the X can be 
accounted for by two latent factors that serve as common causes of the X. Put another 
way, there are two unknown variables “out there” that are common causes of the various 
X and that explain the correlations among them. Our task as a theorist is to identify those 
two variables.  

One approach to guessing the content of the factors is to use substantive 
considerations. For example, in the case of a single factor model of different types of 
abilities (verbal, spatial, math,, reading), we might posit the underlying factor that 
accounts for the correlational pattern among the abilities is general intelligence based on 
the content of the variables that have been analyzed. Another strategy is to study the 
pattern of the factor loadings and then deduce what the latent factors must be given the 
loading pattern. For example, suppose for a two factor solution of symptoms associated 
                                                 
4 Eigenvalues and eigenvectors are numerical values with certain properties that result from performing operations 
on a square matrix. It is beyond the scope of this primer to elaborate them – see Namboodiri (1984)    
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with post-traumatic stress the loadings are such that the first factor strongly impacts 
symptoms related to reliving the traumatic event (e.g., nightmares, flashbacks) and the 
second factor impacts symptoms related to avoidance of social situations that might 
remind one of the traumatic event. The conclusion might be that the two factors are 
generalized re-experiencing propensities and generalized avoidance propensities, 
respectively. Such interpretations are easier to make if the pattern of loadings that 
emerges from the factor analysis is distinctive, such as if each factor strongly impacts a 
few variables but not others within the various X. 

When we “rotate” factors, we do so to try to make the pattern of loadings distinct 
and more interpretable. In essence, we settle upon a final set of loadings that produce the 
smallest residuals between the predicted and observed correlation matrices and that are 
easy to interpret and make conceptual sense of. Factor rotation is usually explained 
geometrically, but the process fundamentally amounts to little more than transforming the 
initial set of loadings derived under the identification conditions described above so as to 
now make the loadings more interpretable. A transformation matrix, T, is specified and 
then multiplied by the loading matrix. The resulting transformed loadings preserve 
fundamental properties of the initial loading pattern but lend themselves to better 
interpretation.5  The challenge for statisticians who evolved factor rotation was to specify 
criteria for making loadings more interpretable without any knowledge of the substantive 
area to which the method is applied. Not an easy task! Thurstone (1947) made one of the 
first such attempts using the idea of simple structure. He offered five desiderata: 

1. Each variable should have a zero or near zero loading on at least one factor. 

2. Each factor should have at least k variables with near-zero loadings associated with it, 
where k is the number of factors in the rotation. If there are three factors, each factor 
should have at least three variables that have large loadings on it  

3. There should be variables with non-trivial loadings on at least one factor but near-zero 
loadings on the other factors. 

4. For a given factor, a large proportion of the loadings should be near-zero, at least when 
the number of factors is large. 

5. There should be only a few variables, if any, with non-trivial loadings on more than 
one factor. 

                                                 
5 One property not preserved is the percent of shared variance accounted for by a factor. The total amount of shared 
variance accounted for by the factors remains the same, but it is redistributed among the factors, usually towards 
greater equality in shared variance accounted for by each factor   
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These desiderata typically result in a solution where each factor has a few variables that 
have high loadings associated with the factor. Thurstone argued that factor analyses that 
achieved such simple structure likely would be more interpretable. Cattell (1978) has 
elaborated on simple structure and noted that an advantage of seeking it is that factor 
solutions are more likely to replicate across studies.  

Orthogonal and Oblique Rotations 

Rotation methods are generally divided into two classes. The first class, called 
orthogonal rotations, maintain the orthogonality of the extracted factors in the initial 
solution as they seek various desiderata, such as simple structure. The second class, 
called oblique rotations, allows for relaxation of the orthogonality requirement and 
permits the underlying factors to be correlated when maximizing desiderata. It turns out 
that under orthogonal rotations, the factor loading for a given variable-factor combination 
will equal the correlation between the factor and the variable. For example, if the factor 
loading for variable X1 on the first factor is 0.30, this is the estimated correlation between 
X1 and that factor. With oblique rotations, this is not the case. Because of this property, 
for oblique rotations, most computer programs report the loadings in the form of path 
coefficients (that regress the observed variable onto the latent factors), called the pattern 
matrix, as well as the estimated zero-order correlation of each variable with the factor, 
called the structure matrix. In orthogonal rotations, these two matrices are identical. In 
oblique rotations, they are not. In addition, programs report the estimated correlations 
between the factors for oblique rotations. If these correlations are very high, then the 
solution might be called into question. 

It is important to keep in mind that oblique rotations do not force the transformed 
factors to be correlated. If the solution with the best simple structure results from the 
factors being uncorrelated, then oblique rotations will yield factor correlations that are 
near-zero and will produce results close to those obtained by orthogonal rotation. In this 
sense, oblique rotation methods are more general than orthogonal rotation methods and 
are “data driven.” Some have argued that forcing factors to be uncorrelated is 
theoretically unrealistic; that latent factors are likely correlated in the real world and that 
analyses should respect this. Studies suggest that when orthogonal rotations are applied to 
population models where the factors are indeed correlated, distortions in loadings can 
result (MacCallum, 2009). We recommend you use oblique rotations unless there are 
strong theoretical reasons not to. 

Blind and Targeted Rotations 

Another general distinction between factor rotations is that of blind versus targeted 
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rotation methods. Blind methods are those in which the objective is to attain simple 
structure in the spirit of Thurstone but with no specific expectations beyond that. 
Targeted rotation methods allow the analyst to incorporate into the rotation process a 
priori specifications about the value of loadings for certain targeted loadings. For 
example, we might target a loading between a given factor and a measured variable to be 
zero. Most rotation methods offered in popular computer programs are blind. 

Popular Methods of Factor Rotation 

There are a dizzying number of rotation/transformation methods that have been 
proposed. We mention a number of them here with the idea you may encounter them in 
the literature. After doing so, we make some recommendations. Arguments can be made 
for each rotation/transformation method and detailed consideration of the methods is well 
beyond the scope of this primer (see Fabrigar et al., 1999; Gorsuch, 1983; Mulaik, 2009). 
For orthogonal rotations, varimax and quartimax strategies are among the more popular. 
To explain these methods, consider a matrix of factor loadings where the columns are 
factors, the rows are the measured variables, and the entries are the loadings (note: we 
use simplified notation to indicate loadings): 

 
 F1 F2 F3 
    

X1 L1 L7 L13 
X2 L2 L8 L14 
X3 L3 L9 L15 
X4 L4 L10 L16 
X5 L5 L11 L17 
X6 L6 L12 L18 

 
Varimax strategies emphasize simple structure by seeking a set of loadings that increase 
initially large loadings within a given column (e.g., L1 through L6; L7 through L12; and 
L13 through L18) and decrease initially small loadings within that column so that each 
factor has fewer variables with large loadings. Quartimax strategies seek to increase 
initially large loadings within a given row (L1, L7 and L13; L2, L8 and L14; and so on) and 
decrease initially small loadings within that row so that each variable will have larger 
loadings on fewer factors. Varimax rotation seems to be the more popular of the two. 
     There is no single method of oblique rotation that dominates current usage. 
Asparouhov and Muthén (2009) report favorable results for the geomin rotation method, 
especially for simple and moderately complicated loading structures. However, they find 
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geomin has limitations when trying to recover complex loading structures that have three 
or more factors with many variables that have sizeable loadings on three or more factors.6  
Such scenarios are not common, however, so geomin is often a good choice. 

The classic promax rotation method is a derivative of varimax algorithms as applied 
to oblique rotations. On a technical level, it raises factor loadings to different powers for 
rotation purposes, with higher powers leading to more simplistic rotated structures. A 
power of 3 often works well. Promax has the advantage of being computationally 
efficient, but it is generally inferior to newer oblique rotation methods (Browne, 2001). 
The simplimax rotation method (Kiers, 1994) is related to the promax method but uses 
what is known as partially specified targeting. It allows the user to specify a priori the 
number of loadings that should be forced to be near-zero but does not specify which 
loadings to make near-zero. This is determined empirically during the rotation process. If 
the specification of the number of near-zero loadings is not realistic relative to the true 
model, the solution will not converge.  

Bentler (1977) proposed a metric invariant pattern simplicity rotation criterion that 
has many desirable properties and that if minimized promotes many simple structure 
desiderata. It can be applied to both orthogonal and oblique rotations. There have not 
been many simulation studies to evaluate the approach. 

The oblimin oblique rotation method is a popular method. A parameter called 
gamma (sometimes it is called delta) associated with the oblimin method places 
restrictions on the magnitude of the factor correlations that are allowed.7 When gamma is 
set to 0, the method is equivalent to an oblique rotation method called quartimin. When 
set to 0.50 it is equivalent to a rotation method called biquartimin. Harmen (1976) 
recommends setting gamma to zero, which is the typical default in computer programs. 
Although gamma can be set to numbers greater than 0.80, doing so can introduce analytic 
complications by allowing factors to be so highly correlated that they are 
indistinguishable. Of course, this will not always happen because the factor correlations 
are data driven. If gamma is set to 1.0, the method is equivalent to an oblique rotation 
approach called covarimin.  

In an influential paper, Crawford and Ferguson (1970) elaborated a family of 
rotation methods that are commonly referred to as the Crawford-Ferguson family or CF-
methods. There are two sub-classes, one for orthogonal rotations and one for oblique 
rotations. We concentrate here on the CF-oblique family. Crawford and Ferguson derived 
a numerical index of loading pattern complexity, called kappa, that includes a term that 
                                                 
6 There exists an orthogonal variant of geomin rotation but its performance is not well documented. Geomin was 
developed primarily as an oblique rotation method.  
7 Gamma does not reflect a correlation coefficient nor is it in correlation units. However, its value governs the 
magnitude of correlations allowed between factors. 
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reflects the size of loadings within variables but across factors and a term reflecting the 
magnitude of loadings within factors but across variables (see the above matrix). By 
setting different values of kappa prior to rotating the factors, one emphasizes different 
facets of simple structure during the rotation process. For example, setting kappa to 1/k 
(where k is the number of measured variables) and then executing the CF algorithm, one 
obtains an oblique version of varimax criteria. Setting kappa to 0 produces a quartimin 
rotation. For details of the approach, see Browne (2001). 

Recommendations and Additional Comments 

Of the many rotation method available, we tend to prefer the geomin method and 
recommend it coupled with maximum likelihood extraction. The CF-varimax (oblique) 
and CF-quartimin (oblique) rotation methods, coupled with maximum likelihood 
extraction, also have much to recommend. The advantage of using maximum likelihood 
and any of these three rotation methods is that they are well grounded in a statistical 
theory that permits one to generate standard errors, confidence intervals, and margins of 
error for the loadings and factor correlations as well as providing indices of model fit 
(described below).  

Factor rotation is common in exploratory factor analysis but it is not used in 
confirmatory factor analysis. This is because exploratory factor analytic models are 
inherently under-identified (i.e., indeterminant) hence rotation is possible. Confirmatory 
factor analytic models generally are not under-identified. Factor rotation makes no sense 
in confirmatory factor analysis as there is one and only one solution for reproducing the 
correlations. Factor rotation also does not apply to single factor models. This is because 
for single factor models, there is a unique solution for loadings to reproduce the 
correlation matrix, i.e., one factor models are not indeterminant   

Many methodologists are uncomfortable with the indeterminacy of factor analysis 
and do not find rotation strategies to be satisfactory resolutions to the problem. They 
argue that the ultimate choice of a final set of loadings is arbitrary because it is driven by 
arbitrary statistical criteria, such as simple structure. In this sense, classic exploratory 
factor analysis is a controversial method that has been the subject of considerable debate 
about whether it is ever an appropriate approach to data (see, for example, Heim, 1975; 
Steiger & Schonemann, 1999; Lovie & Lovie, 1995). 

MODEL FIT 

Once a model with a given number of factors has been fit to the data, we need to evaluate 
how well it fits, i.e., how well it reproduced the correlation matrix. We discuss in the next 
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section the problem of how to choose the number of factors for a factor model. However, 
we need to discuss evaluating model fit first because, ultimately, choosing the number of 
factors is a question of evaluating model fit for models with differing numbers of factors 
and then comparing them.  We describe a wide range of model fit indices to give you a 
sense of ones you might encounter. We then make recommendations, accordingly.  

Root Mean Square Residual 

One obvious way to evaluate model fit is to examine the residual correlation matrix to 
ensure that its values are near zero. A rough index of fit is to calculate the average (root 
mean square) residual of the off diagonals of the residual matrix. As a rough rule of 
thumb, statisticians suggest it should not be larger than 0.05 to 0.08, but this standard can 
shift depending on context. We mentioned this index earlier as the root mean squared 
residual. In the CFA literature, it is called the standardized root mean squared error and is 
calculated a bit differently.  

Chi Square Test of Fit 

When maximum likelihood extraction is used and if the population X scores are 
approximately multivariately normally distributed, then under the assumption of a zero 
residual correlation matrix in the population, the value of FML times N-1 is chi square 
distributed with degrees of freedom equal to 

df = ((0.5)(k)(k + 1) + k)  -  t 

where k is the number of measured variables in the input matrix and t is the number of 
parameters estimated in the model. This property allows us to compute a p value for the 
chi square statistic to evaluate the following null and alternative hypotheses: 

H0: The population residual correlation matrix is a zero matrix 

H1: The population residual correlation matrix is not a zero matrix. 

If the chi square test is statistically significant (p < 0.05), then the null hypothesis of 
perfect model fit in the population is rejected and the model is called into question. If the 
chi square is statistically non-significant, then there may or may not be perfect model fit 
in the population. Given this, a model is said to be viable if it yields a statistically non-
significant chi square test.  

Parenthetically, whereas FML often is multiplied by N-1 to produce the chi square 
statistic, a small sample correction has been suggested that multiplies FML instead by N - 
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(2k + 5)/6 – 2m/5, where k is the number of measured variables and m is the number of 
factors (Bartlett, 1950). The latter is commonly used in software for exploratory factor 
analysis whereas software for confirmatory factor analysis tends to use N-1 as the 
multiplier. With large N, the difference between the approaches is minimal 
 The chi square test statistic and its associated test of significance have been 
criticized on several grounds. First, the statistic is not always chi square distributed for 
purposes of testing statistical significance, especially for small sample sizes and non-
normal data (but see Joreskog, 2007, for its robustness properties). In such cases, the p 
values associated with it may not be accurate. Second, like most statistical tests, the p 
value is influenced by sample size; larger sample sizes produce smaller p values, 
everything else being equal. As such, model evaluations with large sample sizes will tend 
to lead to model rejection given it is inevitable the population residual matrix will not be 
exactly zero. Kenny (2015) suggests the test is most meaningful for sample sizes between 
75 and 250, but there is controversy surrounding this. Third, the value of chi square is 
affected by the size of correlations between variables: The larger the correlations, the 
larger the chi square tends to be, everything else being equal (Kenny et al., 2015).  

The Root Mean Square Error of Approximation 

Another fit index for the factor model is called the root mean square error of 
approximation (RMSEA) developed by Steiger and Lind (1980) and elaborated by 
Browne and Cudek (1993). It is formally defined in the population as 

ε  =  (F0 / df )1/2                   [1] 

where F0 is a generic discrepancy function reflecting disparities between the predicted 
and observed correlations and df is the associated degrees of freedom. FML is typically 
used as F0 in the above definition in conjunction with the formula for df given above. 
Conceptually, ε is an index of the lack of model fit (as reflected by F0) per model degree 
of freedom, because F0 is divided by df.  
  The above formula is the population representation of the RMSEA. If we work with 
FML as our discrepancy function, statisticians have shown that the sample value of FML is 
a positively biased estimator of the corresponding population value of FML. A correction 
factor has been suggested to eliminate the bias as follows: 

F̂ML = FML – m 

where m is the correction factor and equals df/(N-1) and F̂ML is the sample estimate of the 
population FML. If F̂ML is negative, it is set to 0. 
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  The smallest value RMSEA can take is 0 and the largest value it can have is 
infinity, although it rarely exceeds 1.00. The smaller the value of RMSEA, the better the 
model fit. More parsimonious models have larger degrees of freedom, so the presence of 
df in the equation acts as a penalty function for lack of parsimony. Browne and Cudek 
(1993) suggest that, as a rule of thumb, RMSEA values less than 0.08 imply adequate 
model fit and values less than 0.05 imply good model fit.  

The Test of Close Fit 

Browne and Cudek (1993) also argue that the p value for the traditional chi square test of 
model fit is too stringent because, as noted, it tests for perfect model fit. Perfect model fit 
is often seen as unrealistic. Browne and Cudek devised an inferential test for a "close" 
fitting population model, where “close” is defined as a population RMSEA value of 0.05 
or less. Thus, the null and alternative hypotheses for the test are 

H0: ε ≤ 0.05 

H1: ε > 0.05 

where ε is the population RMSEA. By contrast, the chi square test translates into a test of 

H0: ε = 0.00 

H1: ε > 0.00 

Focusing on the first set of null and alternative hypotheses, if the p value for the test for 
close fit is non-significant (p  > 0.05), then this is consistent with the presence of a close 
fitting model in the population. By contrast, a statistically significant p value for close fit 
(p < 0.05) leads one to reject the null hypothesis and conclude the model as applied in the 
population does not yield a close fit.  
  The test of close fit also can be implemented by calculating a 90% confidence 
interval for RMSEA. If the lower limit of the interval for the estimate of ε is less than 
0.05, than this is the same as obtaining a non-significant test of close fit. If the lower limit 
is greater than 0.05, then this is the same as obtaining a statistically significant p value for 
close fit. A 90% confidence interval is used because of the one-sided nature of the test. 
An even more demanding test is to evaluate if the upper confidence interval of the 
RMSEA is less than 0.05. This would lead one to be quite confident that the model is a 
close fitting model in the population. For details about this latter test, see MacCallum et 
al. (1996). MacCallum et al. (1996) refer to this latter test as the test of not close fit.  
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The Comparative Fit Index 

Another fit index is the comparative fit index (CFI), or its close counterpart, the Tucker-
Lewis Index (TLI). The CFI compares the fit of the target model with the fit of a 
competing model known as the "independence" or "null" model. The "null model" is one 
that posits no correlation between any of the observed variables. Such a model is not very 
viable in most research situations, so one expects that a “good” model will fit quite a bit 
better than it. The CFI ranges from 0 to 1.0, with larger values implying the target model 
fits better than the null model. A CFI of 0.90 means the target model fits 90% better than 
the null model. A CFI of 0.70 means the target model fits 70% better than the null model. 
A CFI of 1.00 means the target model fits at least 100% better than the null model. And 
so on. A rule of thumb is that models with a CFI less than 0.95 are suspect.  
 The formal definition of the CFI is as follows: Let dM =  the χ2 value for the target 
model minus its degrees of freedom and dI =  the χ2 value for the independence model 
minus its degrees of freedom. Then   

CFI  =  (dM – dI ) / dI  

If the index is greater than one, it is set to one. Note that the CFI scales the improvement 
in fit of the model relative to the independence model (the numerator) against the lack of 
fit of the independence model (the denominator).  
 It turns out that the CFI is affected by the size of the correlations between 
variables in the population correlation matrix, which is a bothersome property. If all of 
the population correlations are, in fact, low, then the null/independence model will fit the 
data well and the target model cannot improve much on it. Kenny et al. (2015) 
recommend not using the CFI (or TLI) if the RMSEA for the null model (a model that 
presumes all the correlations are zero) is less than 0.16, because the CFI will tend to be 
artificially low. 

Recommendations 

In sum, there are a wide range of model fit indices to choose from. No single index of 
global fit is perfect. All have strengths and weaknesses. We like to examine model fit 
from multiple perspectives before making a judgment about model fit. As such, we 
examine the residual correlation matrix, the root mean square of the off-diagonals of the 
residual matrix, the chi square test of the residual matrix, the RMSEA (and its associated 
confidence intervals for the close fit test), and the CFI. Examination of these fit indices 
usually gives one a good sense of the fit of the model. See the worked example associated 
with this primer for a substantive application.  
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CHOOSING THE NUMBER OF FACTORS 

A critical decision when conducting an exploratory factor analysis is to decide how many 
factors are needed to adequately account for the correlations between variables. One of 
the more popular rules for making this decision is to retain factors that have eigenvalues 
greater than 1.0 (Fabrigar et al., 1999). Statisticians have found the rule to be sub-optimal 
despite its common use by applied researchers. One problem is that the criterion was 
proposed for the case of principal components analysis not factor analysis, the latter for 
which it is not appropriate (Fabrigar et al., 1999). Another problem is that it can lead to 
arbitrary decisions, such as when one factor has an eigenvalue of 1.01 (hence it is 
retained) and another has an eigenvalue of 0.99 (hence it is not retained). Finally, the rule 
has not performed well at detecting the true number of factors in a large number of 
simulation studies (Zwick & Velicer, 1986). We recommend against this approach. 
 In this section, we review a range of approaches you may encounter for determining 
the number of factors to adopt in a factor analysis. After doing so, we make some 
recommendations from among them. 

Percent of Variance Accounted For 

One approach is to base the decision on the percent of variance that a factor accounts for, 
retaining only those factors that account for a reasonable percent of the variance (which 
often is considered to be about 10%). There are two indices of percent of variance 
accounted for one can use in this approach. The first is the percent of variance accounted 
for as derived from the eigenvalues of the correlation matrix. This provides perspectives 
on the percent of total variance of the various X accounted for by each possible factor. 
The second is the percent of variance accounted for as derived from the eigenvalues of 
the reduced correlation matrix. This provides perspectives on the percent of common 
variance accounted for by each possible factor, ignoring the unique variance. Most 
computer software does not report the latter percent. This is because the reduced 
correlation matrix can occasionally be non-positive definite, meaning it will have 
negative variances, which are nonsensical. Nevertheless, some researchers find it useful 
to examine the eigenvalues of the reduced correlation matrix with the idea of retaining 
factors that account for nontrivial amounts of the shared variance as opposed to the total 
variance. 

The Scree Test 

Related to the above is an approach known as the scree test. This test focuses on the 
pattern of eigenvalues associated with the factors using the fact that the eigenvalues of 
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each successive factor will be lower than the factor before it. The researcher makes a 
subjective judgment about where there is a large “break” in the magnitude of the 
eigenvalues from one factor to the next. The test is often implemented using a scree plot 
with the factors on the X axis and the corresponding eigenvalues on the Y-axis. As one 
moves to the right the eigenvalues decrease in value and often form an “elbow” reflecting 
a less steep decline. As the values “flatten out” after the elbow, one chooses the factor 
number just before the beginning of the flattening. Figure 6.5 presents an example that 
would lead to a two factor choice. This plot provides both the eigenvalues associated with 
the correlation matrix (labeled PC) and the eigenvalues associated with the reduced 
correlation matrix (labeled FA). Both show a clear elbow at factor 3, so the choice is for 
2 factors. This test has been criticized because of its subjective nature and because the 
graph often fails to show an obvious “elbow.”  

 
 
FIGURE 6.5. A Scree Test 
 

The Minimum Average Partial Method 

Another method for choosing the number of factors that is often used is called the 
minimum average partial (MAP) method (Velicer, 1976). It estimates the average 
squared partial correlation between the measured variables after holding constant 
successive factors and chooses the number of factors by identifying the point where the 
partial correlation is lowest (Recall that in a good fitting factor model, if one partials out 
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all the factors, the correlations between the X variables should be near zero). The test 
makes use of the fact that the average partial correlation ultimately will start to increase 
as one continues to partial out factors/components because of characteristics of statistical 
suppression inherent within the strategy. Unfortunately, this method only works for 
principal components analysis; for factor analysis, the average partial correlation will 
continually decrease (see Velicer, 1976, for details) and searching for the point where it 
begins to increase is futile. As such, we do not consider it further here. It is not really a 
factor analytic diagnostic, in a strict sense – although some researchers erroneously use it 
as such.  

Parallel Analysis 

Yet another method used to identify the number of factors is called parallel analysis 
(PA). Parallel analysis compares the eigenvalues of the observed correlation matrix to 
eigenvalues of randomly generated samples from a comparable population correlation 
matrix based on normal distributions. The rationale is that if nonrandom factors exist, 
then eigenvalues generated from the real data will be larger than those from the randomly 
generated eigenvalues. Only factors associated with empirical eigenvalues consistently 
larger than eigenvalues based on the randomly generated data are retained. There is a 
variant of PA for principal components analysis and for factor analysis, so one must be 
careful to use the proper method (Dinno, 2010). Simulation studies have generally found 
positive support for the approach (Zwick & Velicer, 1986).  

Chi Square Difference Tests 

In contrast to the above strategies, Preacher, Zhang, Kim and Mels (2013) argue for a 
model selection approach that formally compares the fit of competing models that vary 
the number of factors, an approach we think is best. The idea is to conduct an exploratory 
factor analysis for, say, a one factor solution, then a two factor solution, then a three 
factor solution, and so on, followed by formal tests of comparative fit between them.  

One strategy for comparing models when using maximum likelihood extraction is 
to conduct chi square difference tests between models that differ in their number of 
factors. In general, the model with fewer factors is called the constrained model and the 
model with more factors is called the unconstrained model. We want to choose between 
them and determine if the unconstrained model improves on the fit of the constrained 
model in the population. We can frame the null hypothesis as follows: 

H0: FitA -  FitB  = 0 
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where FitA is the population fit for the constrained model and FitB is the population fit for 
unconstrained model. The hypothesis is that there is no difference in fit; the model with 
more factors does not increase the fit at all. The alternative hypothesis has the form: 

H1: FitA -  FitB  > 0 

The formal significance test can be executed by forming the difference in the two chi 
squares associated with each model, as follows: 

χ2Diff  = χ2Constrained -  χ2Unconstrained  

which itself is chi square distributed with degrees of freedom equal to dfConstrained – 
dfUnconstrained. We can then calculate a p value to determine if we reject the null hypothesis 
of no incremental fit. If the p value is less than 0.05 (or some other a priori specified 
alpha), the null hypothesis of equal model fit is rejected. This test has been criticized 
because it can be sample size sensitive and because the null hypothesis of exact model 
equivalence is often unrealistic. It also can yield invalid conclusions with small sample 
sizes and can lack statistical power when the unconstrained model is itself a poor fitting 
model (Yuan & Bentler, 2004).  

RMSEA Tests 

MacCallum, Browne and Cai (2006; see also MacCallum, Lee & Browne, 2010) describe 
a more general method for nested model comparisons. Their approach makes use of the 
RMSEA fit index and compares the RMSEAs for the constrained and unconstrained 
models in the spirit of the chi square difference test described above. However, whereas 
the chi square difference test evaluates the null hypothesis of equal model fit versus the 
alternative hypothesis of non-equal model fit, McCallum et al.’s framework allows one to 
evaluate a null hypothesis of a small difference in model fit (rather than equivalent fit) 
against an alternative hypothesis of a fit difference greater than that small difference. The 
underlying premise of the test is that asking if competing models have exactly the same 
fit per the traditional chi square difference test will almost always be false, so a test of it 
is moot (and driven, in part, by sample size). It is more realistic, they argue, to work from 
a null hypothesis that there is a small difference between models but it is so small that the 
two models can be viewed as being functionally equivalent. When the traditional chi 
square test is expressed using RMSEAs, the null and alternative hypotheses are  

H0: εA -  εB  = 0 

H1: εA -  εB  > 0 



                                                                                                                               Factor Analysis    27 

 
 

where εA is the population RMSEA for the constrained model and εB is the population 
RMSEA for the unconstrained model. McCallum et al. suggest instead testing 

H0: εA -  εB  ≤  d 

H1: εA -  εB  >  d 

where d is a non-negative constant. We can set d to any value, but a typical value is 0.05, 
which, as noted above, is the standard criterion for “close fit.”   
 It turns out that McCallum et al. approach requires we specify the individual 
values of εA and εB in the null hypothesis rather than a single value of d. This is because 
an RMSEA difference of, say, 0.01 when the values of the RMSEA are 0.03 and 0.04 
implies a different amount of fit disparity between models than, say, a difference of 0.05 
and 0.06. Liu and Bentler (2011) propose a modification to the MacCallum et al. method 
that allows one to specify just d and not the individual RMSEAs that define d.
 Related to the RMSEA approach just described is a somewhat easier method 
suggested by Preacher et al. (2013). Based on an extensive simulation study, these 
authors recommend using the RMSEA and its confidence interval to make decisions 
about the number of factors to retain. Starting with, say, a one factor solution, the analyst 
successively increases the number of factors until one finds the first model that has a 
lower bound RMSEA 90% confidence interval value less than the close fit RMSEA 
standard of 0.05. This model then reflects the number of factors to retain. The logic is 
grounded in the test of close fit logic described earlier. 

Information Theory Approaches 

Yet another model comparison approach that has merit is based on information theory 
using either Akaike’s Information Criterion (AIC) or a Bayesian Information Criterion 
(BIC). These indices are discussed in the primer on regression mixture modeling. The 
section from that primer with minor edits is appended to this primer for easier access. The 
current appendix includes a discussion of a variant of the BIC that is particularly relevant 
to factor analysis, called Haughton’s BIC. 

CFI Based Approaches 

A final approach to choosing between models with differing numbers of factors is to use 
the CFI index discussed earlier. Recall that the CFI compares two models, the target 
model and the independence model. It scales the proportion of improvement in fit of the 
target model relative to the independence model. The index can be used for the two 
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models with differing number of factors, but where the chi square for the constrained 
model (the one with fewer factors) and its associated degrees of freedom is used in place 
of the independence model and the unconstrained model (the one with more factors) and 
its associated degrees of freedom is used as the target model. The CFI will then index the 
degree of improvement in fit that the model with more factors provides relative to the 
model with fewer factors. For example, a CFI of 0.25 indicates that the model with more 
factors improved fit by 25% relative to the model with fewer factors. In this scenario, one 
obviously would not use the standard rule-of-thumb of 0.95 to declare one model fits 
better than another because this standard presumes comparison with the independence 
model, which is unrealistic to begin with  

Recommendations 

With such a large array of approaches to determine the number of factors, which one 
should a researcher use?  Each method has strengths and weaknesses. No single index is 
best. Our preference is to evaluate the question from multiple perspectives and hope that 
the conclusions converge across different methods. As such, we use multiple tests to 
make decisions and are most confident in decisions where convergence is evident. When 
different tests lead to different conclusions, we tend to give greater weight to the less 
subjective methods that are accommodating of sampling error. We lean towards use of 
the Preacher et al. (2013) strategy based on RMSEAs for its simplicity and parallel 
analysis, but, as you will see by consulting the worked example for factor analysis, we 
often take a broader perspective than just focusing on these two approaches. We also 
place a premium on factor interpretability, preferring solutions that make the most 
conceptual sense.  

INTERPRETING THE LOADINGS AND COMMUNALITIES 

A factor loading is a standardized regression coefficient. It is the number of standard 
deviations that a measured variable is predicted to change given a one standard deviation 
increase in the underlying factor, holding constant other factors in the model. As noted, 
one task of a researcher is to identify what the unmeasured factors that explain the 
correlations between measures represent. Of particular interest are factor loadings that are 
large for a given factor because such loadings serve as clues about what the factor might 
be. The question then becomes, what is a “large” loading?  

Many rules of thumb have been offered. One rule of thumb often advocated is if the 
absolute value of the standardized loading is greater than 0.30, then the variable is 
“relevant” for that factor. Another rule-of-thumb terms loadings as "weak" if they are less 
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than 0.40, “moderate” if they are between 0.40 and 0.60, and "strong" if they are more 
than 0.60. These guidelines, of course, are arbitrary and should be treated as such. They 
also ignore the fact that there is sampling error in loading estimates and that large 
margins of error (MOE) or wide confidence intervals may be associated with them. 
Ideally one will take this into account. Unfortunately, the calculation of MOEs and 
confidence intervals has been challenging for factor loadings in exploratory factor 
analysis because they often are mathematically intractable. We discuss this more below.   

A property of factor analysis that is underappreciated is that a good fitting model 
can be found even when the measured variables are only modestly correlated and the 
factor loadings are small. To use a simplistic example, suppose a single factor model is 
applicable in a population and has standardized factor loadings for each measured 
variable equal to 0.40. As noted, the correlation between two variables in a valid one 
factor model equals the product of the loadings of the two variables. In this case, all of 
the variables will be correlated (0.40)(0.40) = 0.16 in the population. If the sample data 
reasonably reflect this pattern (which should be the case with a sufficiently large N), the 
fit indices described above will point to good model fit. There will be a low chi square, a 
low RMSEA, and the residual correlation matrix will have entries close to zero. This is 
because the goal of factor analysis is to explain the correlations between measured 
variables irrespective of the magnitude of those correlations. Note also that the rule of 
thumb that a factor loading of 0.30 or greater is meaningful takes on a somewhat different 
meaning when one appreciates that it can be associated with measured variable 
correlations as low as (0.30)(0.30) = 0.09 for two variables “loading” on the same factor. 
Such variables have very little in common by virtue of their low correlation. 

A statistic of interest in factor analyses is the uniqueness associated with each 
measured variable because this indicates the unique variance contained in the variable 
independent of the underlying factors. In a single factor model, for example, a variable 
with a factor loading of 0.70 has over 50% unique variance.8 We believe many 
researchers are too quick to dispense with unique variance contained in measured 
variables by focusing attention only on common factors or factor scores designed to 
represent those factors. When we focus our theorizing on common factors (e.g., by 
averaging scores across variables that load highly on a given factor), we are essentially 
trivializing the unique variance associated with those variables, which may be 
substantively counterproductive. In research that we conduct, we often measure what 
people view as the advantages and disadvantages of engaging in a behavior using single 
item measures of each perception (e.g., the perceived likelihood that voting for a given 
candidate will lead to advantage A, that it will lead to advantage B, that it will lead to 
                                                 
8 In a one factor model, (one minus the squared factor loading times 100), which is considerable. 
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disadvantage C, and so on). We seek to understand which particular advantages and 
which particular disadvantages account for most of the variation in decisions to engage in 
the behavior. Time and again, reviewers of our research are critical that we do not factor 
analyze the perception ratings and focus on the underlying common factors that emerge 
from the analysis. This practice ignores the unique variance in the variables and it is often 
the unique variance that is most predictive of behavior, not the common variance. If the 
data suggest the measures are dominated by common variance, then it might make sense 
to focus on it; but if there are non-trivial amounts of unique variance operating, then we 
should not automatically ignore it for the sake of factor analysis. 

 On computer output, the way to determine the contribution of unique variance to a 
measured variable is to examine its standardized uniqueness value. One minus it will 
equal the contribution of common variance (i.e., the factors) to the measure. For example, 
if the standardized uniqueness is 0.65, then 65% of the variation is unique to the measure 
and 35% is due to the underlying factors     

We close out this section by returning to the problem of calculating margins of 
errors of factor loadings to describe technical issues in doing so. Non-interested readers 
can skip to the next section. As noted, for many forms of factor analysis, the calculation 
of standard errors for factor loadings is difficult because they are mathematically 
intractable. Faced with intractable standard errors, statisticians often resort to 
bootstrapping to estimate them. Bootstrap applications to factor loadings in exploratory 
factor analysis (not confirmatory factor analysis) are problematic because depending on 
sample-to-sample fluctuations, factors can change their ordinal positions and loadings 
can change signs as these ordinal positions shift. This will artificially inflate bootstrapped 
estimates of the standard errors. To apply bootstrapping, the correlation matrices from 
each subsample must be aligned before standard errors are computed (Zhang, 2014). 
Creating such alignment is a non-trivial analytic challenge. Zhang (2014) reviewed 
approaches for estimating standard errors of factor loadings. A general but somewhat ad 
hoc method was offered by Cattell (1988, p. 192), but it is approximate. The preferred 
method is the infinitesimal jackknife method (Zhang, Preacher & Jennrich, 2012), but it is 
challenging to implement. Some statisticians use a stabilizing transformation when 
converting standard errors to confidence intervals for factor correlations (SAS Institute, 
2010). In general, one should focus on MOEs and confidence intervals only after a good 
fitting model has been settled upon. It makes little sense to calculate MOEs and 
confidence intervals for a model that is inconsistent with the data. 

FACTOR SCORES 

Given a satisfactory factor model, many researchers seek to calculate scores on each 
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factor for each individual, usually with the idea of then relating those scores to some 
other construct, be it a hypothesized outcome of the factor or a hypothesized predictor of 
the factor. Technically, we cannot know individuals’ scores on a factor, we can only 
estimate them. Some scoring strategies yield better estimates of the true factor scores than 
others. When deriving factor score estimates, we want them to be highly correlated with 
the true factor scores and we want them to reflect the essential properties of the factor 
model on which they are based. The estimation of factor scores has been debated for 
decades and is quite controversial. In this section, we first describe the nature of the 
controversy and then address strategies that have been used to estimate factor scores in 
practice. We then suggest resolutions to the estimation dilemma. 

Factor Score Indeterminacy 

The central issue that has plagued factor score estimation in exploratory factor analysis is 
that of indeterminacy, i.e., there typically are more than one set of factor scores that 
satisfy the required properties of the factor model and we do not know which scores to 
use unless we make additional assumptions - assumptions that critics argue are ad hoc 
(Schonemann & Steiger, 1978; Mulaik, 2005). If one of the factors has been determined 
to be a latent construct of anxiety, for example, the same individual who has a large 
anxiety factor score estimate for one set of factor scores might have a low anxiety factor 
score estimate for another equally valid set of factor scores that satisfy the requirements 
of the factor model as well as the first set. One such requirement is that the estimated 
scores for the different factors be uncorrelated if an orthogonal rotation method is used or 
reproduce well the correlations between factors if an oblique rotation method is used. As 
well, if we regress a given observed measure, X, onto the factor scores, we should obtain 
factor loadings for the observed measures that are consistent with those of the adopted 
factor model. Finally, within the context of such regression analyses, we should obtain 
estimates of common and unique variance for a given X that reflect those derived from 
the factor model.  
 Here is a way of thinking about factor score indeterminacy: Suppose we learn from 
a factor analysis that an observed variable, X, is correlated 0.80 with an underlying 
factor. We know what each individual’s score is on X because X is directly measured. 
We do not, however, know what the individual’s score on F because F is unmeasured. 
There are many different ways we could arrange possible scores of individuals on F to 
produce a correlation of 0.80 with X. Which of the many possible patterns is the correct 
one? This is the essence of factor score indeterminacy. 

The degree of factor score indeterminacy in a given factor analysis can vary; in 
some cases there exist many reasonable alternative sets of factor score estimates that 
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satisfy the factor model and in other cases, the number is more limited. Statisticians have 
proposed indices of the degree of indeterminacy that likely exists in order to help 
researchers appreciate the magnitude of the problem in a given application (Grice, 2001). 
However, these indices have been questioned and controversial at best (Mulaik, 2005). 

Methods for Estimating Factor Scores 

Two general approaches have evolved for estimating factor scores. Grice (2001) 
refers to them as the refined and coarse approaches to estimation. The refined approaches 
make use of all of the observed measures (in standardized form) and all of the factor 
loadings associated with each measure. Three such methods are popular, the least squares 
regression method, the Bartlett method, and the Anderson-Rubin method. Each calculates 
a set of factor score coefficients, one for each observed variable, that are then multiplied 
by the standardized observed scores for an individual on the X.  These products are then 
summed to yield the individual’s factor score estimate. The methods differ in how they 
define the factor score coefficients and the information used to calculate those 
coefficients. Each approach has strengths and weaknesses and each differs in which 
properties of the factor model are preserved. For statistical details, see Grice (2001).  

The coarse methods do not seek to preserve the formal properties of the factor 
model as rigorously as the refined methods. One commonly used coarse strategy is to 
identify the X measures that have a factor loading above a given threshold (e.g., 0.40) for 
a given factor and then to sum or average the standardized scores for all Xs that exceed 
that threshold in order to define the factor score (using reverse scoring for Xs with 
loadings of opposite sign). If all the X are on a common metric (e.g., all are on a 0 to 10 
scale), some researchers sum or average the raw scores rather than using the standardized 
scores. Averaging raw scores preserves the differences in standard deviations across the 
Xs whereas standardization makes the standard deviations for each X uniform (and equal 
to 1.0). Variations of this strategy include (1) allowing a given X to be used for only one 
factor, even if it exceeds the inclusion threshold on several factors, (2) dropping an X that 
exceeds the inclusion threshold on more than one factor, and (c) using the factor score 
coefficient matrix to determine inclusion of X instead of the structure matrix of loadings. 
Coarse factor score estimates often fail to preserve the properties of the factor model used 
to derive them (e.g., they often mischaracterize the correlations between the factors). 
Nevertheless, researchers find them attractive because of their simplicity and intuitive 
nature. Simulation studies suggest that coarse factor score estimates based on the 
structure matrix often have low correlations with true factor scores (Grice & Harris, 
1998); using the factor score coefficient matrix to make decisions about which X “load” 
on a factor in place of the structure matrix tends to yield better estimates (Grice, 2001).     
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Dealing with Indeterminacy of Factor Scores 

One obvious strategy for dealing with factor score indeterminacy is not to use factor 
scores. If you are interested in assessing the relationship between a factor and some other 
variable (either a cause or a determinant of the factor), this can be accomplished in 
structural equation modeling (SEM) without recourse to factor scores. Interested readers 
are referred to Bollen (1989), Brown (2015) and Kline (2015) 

Having said that, practitioners may find themselves in situations where they need a 
brief assessment tool that is grounded in psychometric theory and that is based in 
empirics. In such cases, factor scores typically have been computed using the coarse 
method described above. There is nothing inherently wrong with this practice as long as 
one keeps in mind that the tool is now removed from the core logic of the factor analysis 
that motivated the tool in the first place. Rather, it is an assessment device in its own right 
whose properties need to be empirically established. 

Mulaik (2005) is a strong advocate of embedding exploratory factor analysis into a 
larger theoretical network to better inform what the underlying factors mean and whether 
the factor scores derived from the factor model are theoretically meaningful. He uses the 
following analogy: Suppose you measure a variable, say an anxiety symptom (which we 
call X1), and someone tells you that there is another variable, F, that is correlated 0.80 
with it. Can you state from this information what F is?  The answer is, of course, no. If 
we also learn that F is highly correlated with X2 and X3 but not X4, X5 and X6 within 
the context of a factor analysis, then this provides us with more “clues” to discern what F 
might be. X1, X2 and X3 all might focus on social phobia/anxiety and X4, X5, and X6 
might each focus on panic anxiety. Taking this a step further, if we also can identify 
predictors of F and outcomes of F in a broader nomological network, we have even more 
information to base an inference on. For example, we might find that F is related to a 
childhood history of parents being critical of their children in social situations and that F 
predicts future avoidance of social situations. Mulaik (2005) argues that the conduct of 
exploratory factor analysis in such broader nomological networks and the evaluation of 
the theoretical coherence of factor scores in those networks is key to addressing factor 
score indeterminacy and factor identification. Recent advancements in exploratory 
structural equation modeling have provided researchers with the tools to do this 
(Asparouhov & Muthén, 2009; Marsh et al., 2009).  

The problem of factor indeterminacy has generated heated debate among 
psychometricians, a point driven home by papers titled like “The Green-MacDonald 
Proof of the Non-Existence of Factor Analysis” by Louis Guttman (1944) in response to 
work by Green and MacDonald that supposedly affirmed the utility of factor analysis. All 
three of these individuals (Green, MacDonald, and Guttman) were esteemed statisticians 
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with impeccable credentials. The underlying issues for indeterminacy are complex and a 
primer such as this is no place to delve into them in depth. We suggest Mulaik (2005) as 
a useful resource on the controversy more broadly  

MAJOR AND MINOR FACTORS 

Sometimes a factor analysis will result in a poor fit because in addition to a few major 
factors there also exist some minor factors that are more localized. Consider Figure 6.6 
that presents a one factor model where a generalized communication quality factor 
between parent and child is thought to influence adolescent perceptions of parent-
adolescent communication quality. The loadings are large and the correlations between 
the variables are obviously strong. Suppose that X1 and X2 are both in topical domains 
that pertain to school. The predicted correlation between them is the product of the two 
factor loadings, or (0.85)(0.85) = 0.72. Suppose, the observed correlation between them 
was 0.85 and, further, that all of the other observed correlations in the model were well 
reproduced by the loadings - it is just this one particular pair of variables that the 
correlation was under-predicted by too much. This suggests that there might be a “minor 
factor” that needs to be taken into account - a factor that serves as an additional, weaker 
common cause of just X1 and X2. This minor factor can be represented in different ways, 
but one approach represents it in the form of correlated residuals or correlated uniqueness 
components, per Figure 6.7. For example, suppose that both of the items in question dealt 
with conflict in school and that there exists a latent factor pertaining to school conflict 
that influences just these two items. This localized latent school conflict factor resides in 
u1 and it also resides in u2 because these uniqueness components reflect all determinants 
of X1 and X2 that are not captured by the underlying latent factor of generalized 
communication quality. Because both u1 and u2 contain this variable, they should be 
correlated with one another. In essence, the addition of correlated uniqueness components 
recognizes the presence of this minor factor. Technically, this is no longer a one factor 
model because we have posited a minor factor that influences X1 and X2. But the 
generalized communication quality factor can still be thought of as the primary source of 
the correlations between the X. Most software for exploratory factor analysis does not 
permit correlated residuals. One must use instead SEM software. 

SAMPLE SIZE CONSIDERATIONS 

A common question is what sample size is necessary to conduct a factor analysis. Most 
guidelines base sample size recommendations on the number of variables in the analysis, 
with more variables demanding larger sample sizes. The recommendations vary  
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FIGURE 6.6. Single Factor Model of Communication 
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FIGURE 6.7. Single Factor Model of Communication with Correlated Error 

 
dramatically, with some methodologists stating a ratio of 5 participants per measured 
variable is necessary; others recommend a ratio as high as 100 to 1. In simulation studies, 
most of these rules of thumb have been found to be unsatisfactory (Wolf, Harrington, 
Clark & Miller, 2013). The main limitation is that adequate sample size is not a simple 
function of the number of measured variables. Sample size needs are impacted by at least 
three factors, (1) the stability of the sample correlation matrix, (2) the use of asymptotic 
theory, and (3) statistical power/magnitude of margins of error. We discuss each, in turn. 
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Correlation Matrix Stability 

The concept of sample correlation matrix stability is complex but it has to do with how 
well the sample correlation matrix represents the population correlation matrix and the 
extent to which deviations between the two based on sampling error can lead the analyst 
astray during model testing and evaluation. In simple terms, a reasonably stable sample 
correlation matrix is one that preserves the rank ordering of population correlations 
among all possible pairs of variables. As well, the magnitude of a given sample 
correlation should not be too discrepant from the corresponding population correlation. 
As a simple example, consider a 4X4 correlation matrix. Table 2 presents the population 
correlations and two examples of sample correlation matrices derived from that 
population but using different sample sizes. 

Table 2: Population and Sample Correlations 
 
                   Population               Sample 1                                      Sample 2 
 
 X1 X2 X3 X4  X1 X2 X3 X4  X1 X2 X3 X4 
               
X1    -     -     -    
X2 0.36    -    0.37 -    0.24 -   
X3 0.21 0.20    -   0.24 0.19 -   0.28 0.27 -  
X4 0.14 0.16 0.38    -  0.13 0.17 0.39 -  0.22 0.20 0.25 - 
 

 
Note that population matrix shows tendencies towards a two factor model (X1 and X2 for 
one factor and X3 and X4 for another factor). Sample 1 correlations preserve the rank 
ordering of the population correlations and they are reasonably close in value to the 
population correlations. This is not the case for the Sample 2 correlations, which tend 
towards a one factor model. The Sample 1 correlation matrix is more stable than the 
Sample 2 correlation matrix.  
 Stability of a sample correlation matrix is impacted by (a) the sample size (larger 
sample sizes reduce sampling error), (b) the number of variables in the matrix (the greater 
the number of variables, the larger the correlation matrix and, in turn, the greater the 
opportunity for sampling error), and (c) the absolute magnitude of the correlations 
(correlations closer to zero tend to have more sampling error than correlations far away 
from zero. As well, (d) the sheer patterning of correlations in the population matrix can 
make a difference in the stability of the sample correlation matrix. For example, the more 



                                                                                                                               Factor Analysis    37 

 
 

variables that have non-trivial loadings on a factor in the population and the higher the 
communalities of those variables, the smaller the sample size usually can be to 
adequately capture the factor structure in the population (MacCallum et al., 1999). For all 
of these reasons, it should not be surprising that simple rules of thumb about sample size 
to number of variables ratios are of limited utility. 

Asymptotic Theory 

Asymptotic theory for exploratory factor analysis is an issue for the use of significance 
tests and confidence intervals in the analysis. It refers to scenarios where the sampling 
distribution of a parameter behaves in mathematically tractable ways but only as sample 
sizes become large. For example, sampling distributions for factor loadings in traditional 
maximum likelihood extraction tend towards mathematical tractability as sample size 
increases. The question becomes at what sample size is asymptotic theory compromised 
if one uses a smaller sample size. As with correlation matrix stability, you will encounter 
various rules of thumb about this matter that usually hover around required samples sizes 
of 100 to 150. These rules of thumb also tend to be oversimplified. 

Statistical Power and Margins of Error 

A third consideration for sample size determination is that of statistical power, again, if 
you are going to make use of significance tests or confidence intervals. If you use 
maximum likelihood based fit statistics to determine the number of factors, you will want 
to ensure that the sample size is sufficient to detect undesired levels of ill fit. MacCallum, 
Browne and colleagues (MacCallum, Browne & Sugawara, 1996; MacCallum, Browne & 
Cai, 2006; MacCallum, Lee & Browne, 2010) describe an approach to conducting power 
analysis using RMSEA fit statistics. As well, you may want to use a sample size that will 
produce margins of errors or confidence intervals for selected parameters that are not too 
large. Thus, rather than statistical power dictating sample size, a focus on sample size 
determination for margins of error is relevant (Kelley & Maxwell, 2003). 

Determining Sample Size 

In the final analysis, the only way to truly know the requisite sample size needed for a 
given exploratory factor analysis is to conduct a targeted simulation study specific to the 
model and research design you plan to employ. Such simulation strategies are discussed 
in Muthén and Muthén (2002). Having said that, sample sizes less than 100 or 150 
typically (but not always) are a warning flag for potential problems.  
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DICHOTOMOUS AND ORDINAL VARIABLES 

The factor models discussed thus far applies to measured variables that are continuous 
with interval or ratio level metrics. Researchers sometimes desire to factor analyze 
variables that either are measured coarsely, have ordinal properties, or are dichotomous. 
For such cases, special analytics may be required.  

Traditional EFA analyzes Pearson’s correlations. Although Pearson correlations are 
appropriate with continuous variables, it is often the case that we work with coarse 
measures of continuous constructs. Continuous variables, technically, have an infinite 
number of values between any two points. For example, time is a continuous variable and 
there is an infinite number of values that can occur between, say, 1 and 2 seconds (e.g., 
1.10 seconds, 1.103 seconds, 1.1035 seconds, and so on). When we measure time or other 
continuous variables in research, our measures may be “coarse” and only make a limited 
number of discriminations between the lowest and highest scores. We might measure job 
satisfaction, a continuous construct, on a 7 point scale from very dissatisfied to very 
satisfied in a way that we have only 7 categories (1, 2, 3, 4, 5, 6, and 7). An important 
question is: how much trouble do we get into by using such coarse measures with 
statistical approaches that presume continuous measurement?   

The answer depends on the question being asked and the particular statistical model 
being evaluated. In a classic study focused on Pearson correlations, Bollen and Barb 
(1981) conducted a simulation where they created data so that the true population 
correlations between two continuous variables were either 0.2, 0.6, 0.8, or 0.9. Bollen and 
Barb then created coarse measures from the continuous measures for each population by 
breaking the continuous measures into anywhere from 2 to 10 categories. For example, a 
continuous variable that ranges from -3 to +3 can be turned into a two point scale by 
assigning anyone with a score of 0 or less a “0” and anyone with a score greater than 0 a 
“1.”  Bollen and Barb computed the correlations using “coarse” measures and examined 
how close they were to the case where the correlation was computed when both variables 
were fully continuous. They found that the true correlations were relatively well 
reproduced by the coarse measures as long as the coarse measures had 5 or more 
categories. For example, the reproduced correlations for five category measures were 
within about 0.06 correlation units of the continuous-based correlations when the true 
correlations were at or below 0.60. Bollen and Barb (1981) concluded that five categories 
were probably sufficient for many applications. This recommendation has been replicated 
in many other simulation studies (although some research suggests seven or more 
categories may be best; see Green et al., 1997; Lozano, García-Cueto & Muñiz, 2008; 
Lubke & Muthén, 2004; Rhemtulla, Brosseau-Liard & Savalei, 2012; Taylor, West & 
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Aiken, 2006). Thus, coarse measurement is not necessarily problematic unless it is very 
coarse (less than five categories).  
 Coarseness of metrics is not the same as ordinality of metrics, although there is a 
link between the two properties. Given an underlying quantitative dimension that is 
continuous, a metric is an interval indicator of that dimension if it is a linear function of 
it. In the Bollen and Barb study, the break points of the scales were defined in a way that 
the quantitative categories were roughly linear functions of the true scores, although strict 
linearity was obviously compromised as the metrics became quite coarse. Nevertheless, 
the approximation to linearity was not too crude in many cases. Ordinal measures are 
ones that are monotonic, non-linear functions of the underlying dimension.  
 Some methodologists question the use of ordinal measures with Pearson 
correlations. To be sure, one can correlate any set of numbers with any other set of 
numbers and correlation analysis will provide insights about how the two sets of numbers 
are (linearly) related. However, in most applications, we are not interested in making 
statements about numbers per se; rather we want to make statements about the constructs 
that those numbers represent. We might want to estimate the correlation between the 
constructs of anxiety and depression (do people who worry alot also tend to be sad?), but 
all we have to work with are scores on anxiety and depression tests. If the measures are 
ordinal rather than interval, then characterizations of the magnitude of the correlation 
between the underlying constructs using the observed measures can be biased. For 
example, the true correlation might be 0.35, but if our measures are decidedly ordinal, we 
might find that the correlation between measures is only 0.20. In this sense, correlation 
analysis for continuous variables presumes interval measures.  

Specialized ordinal methods for estimating correlations have been proposed to 
adjust for the bias that is introduced by using ordinal measures, but such approaches 
make their own assumptions that can lead to worse estimates of associations than just 
treating ordinal data as interval. The reality is that if measures are not “too ordinal,” then 
they likely can be meaningfully analyzed using Pearson correlations. The statement that a 
measure will not be problematic as long as it is not “too ordinal” will strike some readers 
as unusual because most students learn that scales are either ordinal or interval. Such 
dichotomous thinking is misleading. It is similar to saying someone has a fever because 
their body temperature is one tenth of one degree above the standard of 98.6oF (37oC). 
The person does indeed have a fever, but it is small and inconsequential. The same is true 
of measurement properties like ordinality. A measure can approach intervalness closely, 
but technically still not be interval.  
 Statisticians have developed measures of association to complement the Pearson 
correlation for the case where measures are too ordinal or too coarse. A tetrachoric 



                                                                                                                               Factor Analysis    40 

 
 

correlation is an index of association that reflects the correlation between two continuous 
variables, but the measurement of both of the variables occurs on coarse, dichotomous 
metrics. This type of correlation makes a simplifying assumption that the underlying 
continuous variables are bivariately normally distributed, but this assumption rarely holds 
in practice. A polychoric correlation generalizes the tetrachoric correlation to the case 
where one or both of the observed measures has more than two categories that are ordinal 
in character. Again, bivariate normality of the underlying continuous constructs is 
assumed. A biserial correlation estimates the correlation between two underlying 
continuous variables, but where only one of the two observed measures has been 
measured on a coarse, dichotomous level and the other has been measured on a 
continuous metric. A polyserial correlation is one where one of the measures is a coarse 
ordinal measure (of a continuous construct) with more than two categories, but the other 
measure is continuous. A tetrachoric correlation is a special case of a polychoric 
correlation and a biserial correlation is a special case of a polyserial correlation. Finally, a 
point biserial correlation is the correlation between a true dichotomous variable (e.g., has 
smoked marijuana versus not) and a continuous variable whose metric is continuous. 
 A problem with performing factor analysis on the above correlations is that many 
of the indices assume normality in ways that violations of the assumption are 
consequential. For example, a tetrachoric correlation between two dichotomous variables, 
X1 and X2, assumes that a given dichotomous variable (e.g., X1) is a crude index of a 
continuous variable that underlies it. The underlying variable is assumed to be normally 
distributed so that one can specify threshold values that define how individuals’ true 
scores on the continuous variable translate into responses on the observed, dichotomous 
metric; values below the threshold translate to a score of 0 and values at or above the 
threshold translate into a score of 1. If the threshold values are misspecified, the 
correlation estimate is subject to bias. If the underlying variable is not normally 
distributed, then the threshold values will be misspecified. Tetrachoric correlations (as 
well as polychoric and polyserial correlations) also can be sample size demanding, show 
large sample-to-sample fluctuations, and can result in non-Gramian correlation matrices 
that produce analytic complications. Our experience is that one sometimes gets into more 
trouble using these methods with their attendant demands than just analyzing the data as 
if they were Pearson correlations in the first place.  
 When one works exclusively with dichotomously measured variables in factor 
analytic contexts, a common approach is to use as input a correlation matrix that contains 
tetrachoric correlations and then to apply one of the factor extraction methods described 
above (e.g., minres, maximum likelihood, weighted least squares). A common argument 
against using phi coefficients (which are simply Pearson’s correlation computed on 
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dichotomous variables) is that factor analyses of them can yield artifactual factors based 
on “item difficulty,” i.e., the base rates of the items. This assertion usually is made 
because the maximum value of a phi coefficient is not plus or minus unity but rather 
depends on the distribution of the dichotomous variables per se. A maximum absolute phi 
of 1.00 is only possible when the marginal distributions of the dichotomous variables are 
uniform, that is both are 50%. The argument is that if items differ substantially in their 
“difficulty” (base rates), then an artificial “difficulty” factor will emerge in a factor 
analysis. The use of tetrachoric correlations supposedly circumvents this artifact.9 
 The idea that difficulty confounds are inherent to phi coefficients has been 
challenged (McDonald, 1985; McDonald & Ahlawat, 1974). McDonald and Ahlawat 
(1974) showed that as long as the probabilities implied by dichotomous items are linearly 
related to the underlying factors, the analysis of phi coefficients will not result in spurious 
factors. Many contemporary measurement models for dichotomous variables are based in 
Item Response Theory (IRT) and assume the relationship between factors and 
dichotomous items has a logit function. This assumption usually is arbitrary. McDonald 
and Ahlawat also argue that the presence of a difficulty factor may be substantively 
meaningful rather than spurious. Factor analysis cannot distinguish this. Several 
simulation studies are consistent with McDonald’s arguments. For example, Parry and 
McArdle (1991) compared methods for factor analyzing dichotomous variables where the 
input matrices were (1) phi correlations, (2) tetrachoric correlations estimated in two 
different ways, and (3) correlations derived from latent trait theory. They found that the 
latter methods were not markedly superior to the approach based on phi coefficients 
across a wide range of simulation conditions. Similar results have been reported by 
Collins, Cliff, McCormick and Zatkin (1986). Weng and Chen (2005) examined the 
performance of parallel analysis with phi versus tetrachoric correlations and found the 
latter to be unstable (see also Chou, Li & Bandalos, 2009); they recommended the phi 
coefficient (but see Garrido, Abad & Ponsoda, 2013, for qualifications). The decision to 
use specialized factor analytic methods for ordinal and dichotomous indicators is more 
complicated than many researchers appreciate.  

SUMMARY AND CONCLUDING COMMENTS 

Factor analysis is widely used in the social sciences. It is distinct from principal 
components analysis in that it attempts to explain the correlations between a set of 

                                                 
9 As it turns out, the maximum value of Pearson’s correlation in a population for continuous variables also is 
dependent on the variable marginal distributions. With bivariate normality, the maximum possible population 
correlations are -1.00 to 1.00. When the population X has a standard normal distribution and the population Y has a 
standard lognormal distribution, for example, the population correlation bounds are approximately ±0.76. 
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variables by identifying generalized common causes of them. By contrast, principal 
components analysis is a data reduction method aimed at forming orthogonal linear 
composites of a set of variables so as to reduce the number of variables one needs to 
work with in multivariate contexts. 

Fundamental decision points in factor analysis include choosing a fit function, 
choosing the number of factors that are necessary to account for the correlation structure 
of the measured variables, and choosing a rotation method. Maximum likelihood fit 
functions have the advantage of being grounded in a strong theory of statistical inference, 
but the inferential aspects of the theory require assumptions of multivariate normality. 
Research suggests the method is relatively robust to violations of the assumption, but it 
does have its limits. Many methods have been suggested for choosing the number of 
factors necessary to account for a correlation structure, with pattern analysis being among 
the more effective of the ad hoc methods. Formal model comparison approaches have 
stronger grounding in statistical theory, with comparisons based on chi square difference 
tests, RMSEAs, and information fit indices (e.g., Haughton’s BIC) being among the 
favored strategies. To be sure, each has strengths and weaknesses, so it is best to 
approach one’s data from multiple vantage points in the spirit of sensitivity frameworks. 
Careful examination of the residual correlation matrix also is important. Among the many 
rotation methods, oblique rotations tend to be more realistic than orthogonal rotations and 
the geomin method has much to recommend as does the oblimin method   

The indeterminacy of factor analysis and the factor scores associated with it is a  
limitation of the method. This fact has led some methodologists to view factor analysis as 
an arbitrary method that has limited practical value. At a minimum, the presence of 
indeterminacy should make you nervous and tentative in your conclusions. One way of 
dealing with indeterminacy is to reduce it by using targeted factor analysis or eliminate it 
altogether by using confirmatory factor analysis with just-identified or over-identified 
models.  

Traditional methods of factor analysis focus on Pearson correlations as applied to 
continuous variables. Specialized methods have been developed for ordinal and 
dichotomous variables. It sometimes is possible to apply factor analysis to such variables 
without invoking the specialized methods if the metrics are not too ordinal and if the 
functions relating the factors to the measures are roughly linear in form.  
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APPENDIX: INFORMATION INDICES FOR MODEL CHOICE 

When choosing between the different models to determine the number of classes, a 
commonly used set of comparative fit indices is based in a statistical theory known as 
information theory. Two such indices are the Akaike Information Criterion (AIC) and the 
Bayesian Information Criterion (BIC). In general, researchers calculate an AIC index 
and/or a BIC index for the different models and then choose the model that has the best 
BIC or AIC value. In this appendix, we develop the logic of these indices, taking a few 
liberties in the interest of pedagogy. We first develop the concept of a log likelihood, a 
concept that is central to both the AIC and BIC. We then describe the model comparison 
process for the AIC, followed by consideration of that process for the BIC.  

Log Likelihoods 

Suppose we have a very large population and half the population is male and half the 
population is female. The probability of a randomly selected case being a male is 0.50 
and this also is true for being a female. Stated more formally: 

p(male) = 0.50       p(female) = 0.50 
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If we randomly select two cases, the probability of a given joint result across the two 
selections or “trials” is the product of their probabilities. As such, the probability of 
observing two males is 

p(male)*p(male) = (0.50)(0.50) = 0.25 

This is known as the multiplication rule for independent trials. Stated more formally, let 
p(A) = the probability of event A on a trial and p(B) = the probability of event B on a 
second (independent) trial. The joint probability of both events A and B is the product of 
the individual probabilities p(A) p(B). To be more concrete, there are four combinations 
that can result, each with a probability of 0.25: 
 
Probability of a male on the first trial followed by a male on the second trial:        0.25 
Probability of a male on the first trial followed by a female on the second trial:     0.25 
Probability of a female on the first trial followed by a male on the second trial:     0.25 
Probability of a female on the first trial followed by a female on the second trial:  0.25 
 
and if we do not care about the order of appearance in the trials, 
 
Probability of two males:                  0.25 
Probability of a male and a female:  0.50 
Probability of two females:               0.25 
 

We now shift gears review another facet of statistical theory that we will make use 
of. If we know that a very large set of scores is normally distributed with a certain mean 
and standard deviation, then we can use knowledge of the probability density function for 
a normal distribution to compute the probability of obtaining any given value when we 
randomly select a case from that distribution. The density formula is   

2-.5(x - μ)
2σ

2

1f(x) =   e 
2πσ

  

 

 
where x is the score value in question, μ is the mean of the distribution, σ is the standard 
deviation of the distribution, π is the mathematical constant pi, e is the constant 
associated with the Naperian logarithm, and the density describes the height of the 
normal curve at the value of x. We can use this density in conjunction with calculus to 
calculate the probability of observing the score in question. As an example, if scores are 
normally distributed with a mean of 100 and a standard deviation of 13.77, then, using 
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the above formula, we find that the likelihood of a score of 99 is 0.0289. For a score of 
87, it is 0.0186.10   

Suppose we randomly select two scores from an extremely large population where 
scores are normally distributed with a mean of 100 and a standard deviation of 13.77. The 
probability that the scores will be 87 and 99, using the joint probability theorem 
described above, is (0.0289)(0.0186) = 0.00053754. Stated another way, the probability 
of observing these two data points given that the mean is 100 and the standard deviation 
is 13.77 (and assuming a normal distribution) is 0.00053754, with further adjustments to 
account for disinterest in the order of selection. 

Suppose we randomly sample 100 data points from the population and calculate the 
likelihood of those 100 data points occurring using a strategy similar to the above 
method. The strategy would involve multiplying each probability by one another, with 
the result being a very, very small number. To make things more manageable and so as 
not to work with such small numbers, statisticians transform the final result by 
calculating the log of it, yielding what is called a log likelihood. The log likelihood is 
indicative of (but not equal to) the probability of obtaining the sample data given a 
“model” that states (a) the scores are normally distributed, (b) the mean is 100, and (c) 
the standard deviation is 13.77.  

Log likelihoods are negative because the log of numbers less than 1.00 is always 
negative. For example, the natural log of 1.00 is zero, the natural log of 0.50 is -0.69, the 
natural log of 0.25 is -1.39, and the natural log of .01 is -4.61.11  

Now, let’s turn the above situation on its head. Suppose we have a set of 100 data 
points but we do not know the mean and standard deviation of the (assumed normal) 
distribution from which they come. We might, based on theory or logic, decide to “test” a 
model that states the mean is 95 and the standard deviation is 15. Using the probability 
density function from above and the strategies described, we can calculate the log 
likelihood for this model. The closer the log likelihood value is to zero (i.e., the less 
negative it is), the more likely the data came from the postulated model. We might 
formulate a second (competing) model that the mean is 100 and the standard deviation is 
13.75 and calculate the log likelihood for it. Again, the closer the value of the log 
likelihood for this model is to zero, the more likely it is the data came from the model 
positing a mean of 100 and a standard deviation of 13.75. 

                                                 
10 Technically, the probability of observing an exact value for a continuous variable is zero. We compute the 
likelihoods here by focusing on the interval defined by the real limits of the number (e.g., 98.5 to 99.5) in 
conjunction with the integral that scales the area under the curve to 1.00.  
11 Actually, some operationalizations of log likelihoods can yield positive numbers, but discussion of this point is 
beyond the scope of this primer.  
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We can compare the log likelihood values for the two models and we might find 
that one model results in a log likelihood closer to 0 than the other model. The model 
with the log likelihood closer to zero is more likely to have produced the data, hence we 
would prefer it to the model with the more negative log likelihood. Such is the 
fundamental logic of choosing between models based on their relative log likelihoods: 
We calculate the log likelihood of competing models and then choose the model with the 
log likelihood that is closest to zero. To be sure, the above explanation is simplistic and 
glosses over technicalities, but hopefully it conveys the general idea of comparing log 
likelihoods for two models.  

As an aside, the above logic also is central to the well-known method of estimation 
called maximum likelihood estimation. In this approach, to estimate the mean of a 
distribution, one conceptually posits different models each representing a possible 
population mean value, calculates the likelihood of observing the data given the “model,” 
and then selects the value/model that has the maximum likelihood.  

Model Comparisons using the AIC 

The AIC is an index of model likelihood or “model fit” based on a log likelihood. A 
common representation of it is 

AIC = (-2) (LL) + 2k            [1] 

where LL is the log likelihood associated with the model in question and k is the number 
of estimable parameters in the model (such as when we estimate an intercept and the 
various regression coefficients). By multiplying the log likelihood by -2, the AIC 
essentially becomes a positive number, with larger numbers indicating lower likelihoods 
of the model. The AIC also includes what is often referred to as a penalty function for 
lack of parsimony, namely 2k. If the model has many parameters in it that must be 
estimated, then the AIC will be larger, everything else being equal. With the AIC, model 
parsimony is rewarded.12  In general, the smaller the value of AIC, the better the “fit” of 
the model to the data. To make this intuitive, if the probability of the data given the 
model is 0.25, the log likelihood will be -1.39 and multiplying this by -2 yields 2.78. If 
the probability of the data given the model is much higher, say 0.50, the log likelihood is 
-0.69 and multiplying this by -2 yields 1.38. So, the smaller the value, the better the 
model. To this term, a penalty function is added that inflates the value of AIC for models 
that estimate more parameters  
                                                 
12 Technically, the 2k term is part of the mathematical theory underlying the derivation of AIC. Also, choosing the 
value of -2 to multiply the LL by is not arbitrary. This value has a clear rationale. See Burnham and Anderson 
(2004).  
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There are many variations of the AIC. For example, some researchers use the above 
formula but with a small sample bias correction incorporated into it. This is sometimes 
referred to as AICc. The nuances of the different versions of the AIC are described in 
Burnham and Anderson (2004). Do not be surprised if for some software you observe 
AIC indices that are quite different in magnitude from other software. The important idea 
for all them is that we can compare different models using their respective AICs and then 
choose models that have “better” AICs when compared to other models.  
  Sometimes we compare more than two models, i.e., we might compare three, four 
or five models. When comparing more than two models, it is common to first identify the 
model with the lowest AIC value (which is the best fitting model of all the models being 
considered). One then calculates the difference in AIC values between each of the models 
and this best fitting model (subtracting the latter from the former). For the best fitting 
model, the difference will be zero and for all other models, it will be positive in value, 
with the larger the disparity, the worse the fit of the target model relative to the best 
fitting model. 

General rules of thumb have been proposed to contextualize the magnitude of the 
difference in AICs between models (see Burnham & Anderson, 2004). The most common 
rules of thumb are as follows: 
 
1. If the disparity in AICs is < 2, then the two models have about the same support   
 
2. If the disparity in AICs is > 2 and < 4, then the better fitting model has positive support 
relative to the model it is compared with   
 
3. If the disparity in AICs is > 4 and < 10, then the better fitting model has strong support 
relative to the model it is compared with   
 
4. If the disparity in AICs is > 10, then the better fitting model has very strong support 
relative to the model it is compared with. 
 
Of course, one must be careful when applying rules of thumb like this because they may 
not apply in all contexts. Indeed, some analysts object to their specification, arguing that 
they can result in the same rigid and counterproductive use of a criterion like “p < 0.05” 
that plagues null hypothesis testing frameworks.  

Another standard for comparing two models vis-a-vis the AIC is to examine what is 
called the evidence ratio. Let D = the AIC for the worse fitting model of the two models 
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minus the AIC for the better fitting model of the two models (and let e be the traditional 
Naperian constant). The evidence ratio is defined as  

ER = 1 / e(-D / 2) 

where ER stands for “evidence ratio.”  It indicates how much more likely the better 
fitting model is (given the data) than the worse fitting model (given the data). For 
example, if the AIC for the better fitting model is 100 and for the worse fitting model it is 
102, then the evidence ratio is  

1 / e -(102-100) / 2) = 2.63  

The better fitting model is 2.63 times more likely to have yielded the data than the model 
it is being compared with.  

Finally, some researchers normalize AIC differences relative to all models being 
compared so that they sum to 1. These are called Akaike weights and indicate the “weight 
of evidence” in favor of a model relative to all models in the comparison set. Akaike 
weights are distinct from evidence ratios because Akaike weights are impacted by the 
particular set of models being compared when the number of models is greater than two. 
Let us first describe how Akaike weights are calculated and then we will make them 
more concrete with an example.  

To calculate the Akaike weight, each model is assigned an index of its likelihood 
relative to that of the best fitting model using the value from the denominator of the 
evidence ratio, e(-D/2), as the index. Let T = the sum of the e(-D/2) values across all the 
models being considered. Then the Akaike weight for a given model is defined as  

e(-D/2) /  T 

The weight ranges from 0 to 1.00, with higher values favoring the model in question.  
To make this concrete, suppose we fit five different models to a set of data. Here is 

a table with the AICs, the differences between the model AIC versus the model with the 
lowest AIC, and the Akaike weights (w): 
 
Model   AIC    D          e(-D/2)  w = e(-D/2)/T 
 
     1   204   2     0.3678     0.2242 
     2   202   0     1.0000     0.6094 
     3  206   4     0.1353     0.0824 
     4   206   4     0.1353     0.0824 
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     5   214   12     0.0024     0.0015 
 
  Sum             T = 1.6408     1.0000 
 
The sum of the weights across all five models is 1.00. The weights represent a continuous 
measure of relative strength of evidence for each model. Each weight can be crudely 
interpreted as the probability that the model is the best model among the set. In the 
present case, the data support Model 2.  

The basic idea when evaluating models is to examine multiple criteria, including the 
magnitude of the difference in AICs, the evidence ratios, the Akaike weights, and the 
substantive meaning/logical coherence of the models, in order to choose the best one.  

Model Comparisons using the BIC 

We describe the logic of the BIC using the Schwartz BIC, which is formally defined as  
 
BIC = -2 LL + ln(N) k           [2] 
 
where k = the number of estimable parameters in the model, N = the sample size, and LL 
= the model log likelihood. Like the AIC, the smaller the BIC, the better the model fit, 
everything else being equal. Like the AIC, there is a penalty function for lack of 
parsimony, but the penalty is different than the AIC. The penalty is somewhat harsher for 
the BIC as opposed to the AIC. There are other instantiations of the BIC, and we discuss 
these below. For current purposes, we use the Schwartz formulation. 

Like the AIC, it is not uncommon for the model with the smallest BIC to be used as 
a reference point for comparing models, with a common practice being to calculate the 
difference between each model in the model set and the model with the best BIC, like we 
did for the AIC. For the best fitting model, this difference will be zero. 

To evaluate models in terms of BIC differences, general rules of thumb are (see 
Raftery, 1995):  
 
1. If the BIC disparity < 2.2, then the better fitting model and the model it is compared 
with have about the same support   
 
2. If the BIC disparity > 2.2 and < 6, then the better fitting model has positive support 
relative to the model it is compared with   
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3. If the BIC disparity > 6 and < 10, then the better fitting model has strong support 
relative to the model it is compared with   
 
4. If the BIC disparity > 10 then the better fitting model has very strong support relative 
to the model it is compared with   

For similar but slightly different standards, see Wasserman (1997). 
One also can calculate what is called a Bayes Factor (BF) for each model relative to 

the best fitting model. It is defined as  

BF = e(D’/2) 

where D’ is the BIC difference between the target model and the best fitting model. The 
Bayes factor is the probability that the model with the lower BIC produced the data 
divided by the probability the model in question produced the data. For example, a BF = 
10 means it is 10 times more likely the model with the minimum BIC produced the data 
than the model in question.  
  Finally, a relative model weight, analogous to the Akaike weight, can be computed 
by normalizing model likelihoods relative to all models in the comparison set so that they 
sum to 1. Let D = the difference in the BIC for the model in question minus the value of 
the BIC for the best fitting model, T = the sum of the index  e(-D/2) across each model. The 
relative weight for a model is 

e(-D/2) / T 

The weight ranges from 0 to 1.00, with higher values favoring the model. Again, the sum 
of the weights across models is 1.00. 

As with the AIC, the basic idea when evaluating models is to examine multiple 
criteria, including the magnitude of the difference in BICs, the Bayes factors, the relative 
weights, and the substantive meaning/logical coherence of the models, in order to choose 
the best one.  

You will encounter variants of the BIC, but the basic logic in applying them is the 
same. For example, like the AICc, there is a sample size adjusted BIC that is similar to 
Schwartz’ BIC, but it applies a somewhat milder penalty function (Sclove, 1987). There 
also are variants of both the AIC and BIC to deal with dispersion issues in count 
regression models (called QAIC and QBIC).  
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Which Method is Better, AIC or BIC? 

A debated topic in statistics is which approach to model comparison is better, one based 
on AICs or one based on BICs. There are advocates on both sides of the matter and we 
dare not venture into this controversy here. The BIC tends to favor simpler models more 
so than the AIC. This can be both a strength and a weakness. Interested readers are 
referred to Burnham and Anderson (2004), Yang (2005), and Kuha (2004). Kuha argues 
for the use of both indices. 

An issue with both approaches is that researchers can be lulled into thinking that the 
best fitting model within a set of models is the true model. This is not necessarily the 
case. Researchers can choose the best of a set of wrong models, which is not our goal.  

Haughton’s BIC 

In factor analysis, a particularly useful index of fit based on the BIC is known as 
Haughton’s BIC, which we abbreviate as HBIC. Let χ2ML be the chi square value 
associated with the maximum likelihood test of the residual matrix discussed above. The 
formula for the HBIC index is  

HBIC = χ2ML – (df) (ln(N/(2π))             

where df is the degrees of freedom associated with the chi square statistic. Recall that the 
χ2ML ranges from 0 (perfect fit) to large positive numbers, with lower values indicating 
better model fit, everything else being equal. As such, HBIC can be thought of as an 
index of model fit with lower values indicating better fit, but with an “adjustment factor” 
for the chi square, namely, the term (df) (ln(N/(2π)). The statistical theory used to define 
this adjustment factor is beyond the scope of this primer (see Bollen et al., 2014), but 
ultimately, HBIC reflects model fit. The values of HBIC range from large negative values 
to large positive values and, like other forms of the BIC, are difficult to interpret for a 
single model in isolation. Instead, HBIC is useful for comparing two (or more) models in 
terms of their relative fit, such as a two factor model versus a one factor model. The 
better fitting model will have the lower value of HBIC. Thus, another strategy for 
comparing models with differing numbers of factors is to choose the model with the 
lowest HBIC. 

Suppose two models are compared using HBIC based on a random sample from a 
population. One likely would obtain different values of the HBIC disparity between the 
two models if a different random sample of the same size was selected from the 
population. Some methodologists have argued that such sample-to-sample fluctuations in 
HBICs should be taken into account when choosing models (Preacher & Merkel, 2012). 
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The fluctuations typically will be greater for smaller as opposed to larger sample sizes. 
Preacher and Merkel (2012) developed a method for estimating margins of error for 
HBIC, allowing uncertainty to be taken into account when making modeling choices. For 
a description of formal methods for comparing BIC differences using a confidence 
interval approach, see Merkle, You and Preacher (2016) and Pornprasertmanit, Wu and 
Little (2013).  
 


