
ORIGINAL EXAMPLE OF PERFORMANCE, ABILITY, AND MOTIVATION 
 

 Educational researchers have long argued that performance in school is a function 
of two factors: a student’s motivation to perform well and his or her ability to perform well. 
This relationship is often expressed in the form of a multiplicative model, as follows: 

                       Performance = Ability × Motivation                                      (1) 

 The basic idea is that if a student lacks the cognitive skills and capacity to learn, 
then it does not matter how motivated he or she is; school performance will be poor. 
Similarly, a student can have very high levels of cognitive skills and the ability to learn, 
but if the motivation to work and attend to the tasks that school demands is low, then 
performance will be poor. The multiplicative relationship reflects this dynamic because, 
for example, if motivation is zero, then it does not matter what a person’s score on ability 
is—his or her performance will always equal zero. Similarly, if ability has a score of zero, 
it does not matter what a person’s motivation score is—his or her performance will always 
equal zero. Although this makes intuitive sense, the dynamics might be different from those 
implied by Equation 1, as we will now illustrate. 

 Our first step is to specify the metrics of the variables involved, since they do not 
have natural metrics. Performance in school might be indexed for individuals using the 
familiar grade-point average metric that ranges from 1.0 (all F’s) to 4.0 (all A’s), with 
decimals rounded to the nearest tenth (e.g., 2.1, 3.5). Ability might be indexed using a 
standard intelligence test that has a mean of 100 and a standard deviation of 15. Motivation 
might be indexed using a 10-item scale that asks students to agree or disagree with 
statements such as “I try hard in school” and “Doing my best in school is very important 
to me.” A 5-point agree–disagree rating scale (1 = strongly disagree, 2 = moderately 
disagree, 3 = neither agree nor disagree, 4 = moderately agree, and 5 = strongly agree) 
provides the range of possible responses. The responses to each item are summed to yield 
an overall score from 10 to 50, with higher scores indicating higher levels of motivation. 

 Note that neither of these metrics takes on a value of zero. Hence, the dynamic of 
having “zero” ability or “zero” motivation discussed above cannot occur. Indeed, one 
might question whether there is such a thing as “zero” intelligence (i.e., a complete absence 
of intelligence). Is a psychological zero point on this dimension even possible? Suppose 
we decide that although a complete absence of intelligence is not theoretically plausible, a 
complete absence of motivation to do well in school is plausible. One way of creating a 
motivation metric with a zero point is to subtract a score of 10 from the original motivation 
metric. Before this operation, the motivation metric ranged from 10 to 50. By subtracting 
10 from the metric, it now ranges from 0 to 40, which includes a zero point. 

 However, there is a problem with this strategy. Just because we can mathematically 



create a zero score on the motivation scale by subtracting 10 from it, this does not mean 
that the score of zero on the transformed scale reflects a complete absence of motivation 
on the underlying dimension of motivation. What evidence do we have that this is indeed 
the case? Perhaps a score of zero on the new metric actually reflects a somewhat low level 
of motivation but not a complete absence of it. The issue of mapping scores on a metric 
onto their location on the underlying dimension they represent is complex, and 
consideration of how to accomplish this is beyond the scope of this book. We will work 
with the original metric of 10–50 and not make explicit assumptions about where on the 
underlying motivation dimension these scores locate individuals. We suspect that, based 
on the content of the items, students who score near 50 are very highly motivated to 
perform well, and students who score near 10 are very low in (but not completely devoid 
of) motivation to perform well. But a separate research program is required to establish 
such assertions (Blanton & Jaccard, 2006a). 

 Suppose that a student has a score of 100 on the IQ test and a score of 30 on the 
motivation test. Using Equation 1, multiplying the ability score by the motivation score, 
we obtain 100 × 30 = 3,000, and we would predict a GPA of 3,000! Of course, this is 
impossible because a student’s GPA can range only from 1.0 to 4.0. We need to introduce 
one or more adjustable constants to Equation 1 to accommodate the metric differences and 
to make it so that a predicted GPA score falls within the 1.0–4.0 range. For example, if we 
let P stand for performance, A for ability, and M for motivation, then we can allow for the 
subtraction of a constant from the product to make an adjustment in metric differences, 
modifying Equation 1 as follows 

                  P = (A)(M) + a 

where a is an adjustable constant whose value is estimated from data. Note, for example, 
if a = –2,997, then this is the same as subtracting 2,997 from the product of A and M. But 
perhaps subtracting a constant is not enough to account for the metric differences. For 
example, a score of 120 on the IQ test coupled with a score of 50 on the motivation test 
would yield a product value of 6,000, and subtracting a value of 2,997 from it would still 
produce a nonsensical GPA. A second scalar adjustment we might use is to multiply the 
product term by a fractional adjustable constant, which yields the general equation 

             P = b(A)(M) + a 

where b is a second adjustable constant (in this case, b would be a fraction) designed to 
deal further with the metric differences. Its value also is estimated from data. The terms on 
the right-hand side of this equation can be rearranged to yield 

         P = a + b(A)(M)                                                             (2) 



Equation 2 is simply a linear function, so performance is assumed to be a linear function 
of the product of (A)(M). Not only do the constants a and b take into account the different 
metrics, but the value of b also provides substantive information as well; namely, it 
indicates how much change in performance (GPA) one expects given a 1-unit increase in 
the value of the product term (A)(M). 

 Figure 1 plots the relationship between performance and motivation at three 
different levels of ability based on Equation 2, where values of a and b have been 
empirically determined from data collected for a sample of 90 students. In this example, a 
= –2.0 and b = .0015. The slope of P on M for any given value of A is bA. There are several 
features of this plot worth noting. First, note that the effect of motivation on performance 
is more pronounced as ability increases. This is evident in the steeper slope (bA = .165) for 
the two variables when the ability score is 110 as compared with the slope when the ability 
score is 100 (bA = .150), and, in turn, as compared to the slope when the ability score is 90 
(bA = .135). These differences in slope may seem small but they are probably substantial. 
For example, when the ability score is 110, a 10-unit change in motivation is predicted to 
yield a (.165)(10) = 1.65-unit change in GPA; when the ability score is 100, a 10-unit 
change in motivation is predicted to yield a (.150)(10) = 1.50-unit change in GPA; when 
the ability score is 90, a 10-unit change in motivation is predicted to yield a (.135)(10) = 
1.35-unit change in GPA. 

 
 

 

FIGURE 1. Example for Performance, Ability, and Motivation 



 
Second, note that at each of the different levels of ability (90, 100, and 110), the relationship 
between motivation and performance is assumed to be linear. Is this a reasonable 
assumption? Perhaps not. Perhaps the relationship between performance and motivation at 
a given ability level is better captured by an exponential function. For example, when 
motivation is on the low end of the motivation metric, increasing it somewhat may not have 
much impact on performance—it will still be too low to make a difference on performance. 
But at higher levels of the motivation metric, increasing it will have an impact on 
performance. Or perhaps a power function is applicable. Power functions have the same 
dynamic as the exponential function, but they “grow” a bit more slowly. Or perhaps an S-
shaped function applies, with floor and ceiling effects on performance occurring at the low 
and high ends of motivation, respectively. 

 The multiplicative model specified by Equation 1 assumes what is called a bilinear 
interaction between the predictor variables; that is, it assumes that the relationship between 
the outcome and one of the predictors (in this case, motivation) is always linear no matter 
what the value is of the other predictor (in this case, ability). To be sure, the value of the 
slope for the linear relationship between P and M differs depending on the value of A (as 
noted earlier), but the function form is assumed to be linear. One can modify the model to 
allow for a nonlinear relationship between performance and motivation at different levels 
of ability, say, in accord with a power function, as follows 

                      P = a + b(A)(Mc)                                                      (3) 

where c is an adjustable constant whose value is estimated from data.  
 Another notable feature of Figure 1 is that at the lowest value of motivation, there 

is a small degree of separation between the three different lines. The amount of separation 
between the lines reflects the differences in the effect of ability (at values of 90 vs. 100 vs. 
110) on performance when motivation is held constant at the same value. But perhaps the 
amount of separation should be a bit more or a bit less than what is modeled in Figure 1. 
The equation can be further modified to allow for a different amount of separation between 
the lines than what Equation 3 implies, as follows: 

                   P = a + b(A)(Mc) + dA                                                   (4) 

where d is an adjustable constant whose value is estimated by data. The logic of adding 
this term is developed in the Appendix and is not central to our discussion here. The main 
points we want to emphasize are the following: 

1.  The theoretical representation in Equation 1 has nontrivial conceptual implications 
because it takes the strong stand that the relationship between performance and the 



predictor variables is captured by the dynamics of a bilinear interaction. In fact, the 
interaction may have a different functional form. 

2.  When building a mathematical model, the metrics of the variables usually have to be 
taken into account (although our next example illustrates a case where this is not 
necessary). 

3.  There may be multiple features of the model (e.g., the separation between curves at 
different levels of the component terms as well as the shape of these curves) that must 
be specified that are not always apparent in simple representations such as Equation 1. 

The fact is that the often presented model of Performance = Ability × Motivation is under-
developed, and applying principles of mathematical modeling helps to produce a better-
specified theory that makes implicit assumptions explicit and highlights complexities that 
should be taken into account. The Appendix of this document develops modeling strategies 
for this example in more detail and illustrates a substitution principle for building 
mathematical models.  

AN EXAMPLE USING COGNITIVE ALGEBRA 

 Another example of using mathematical models to represent social phenomena 
involves models of cognitive algebra. This example illustrates how the implications of a 
mathematical representation can be pursued without recourse to such things as adjustable 
constants and complex modeling of data. 

 Suppose we describe the personal qualities of a political candidate to a person that 
he or she has not heard of by providing the person with three pieces of information. 
Suppose that the three pieces of information are all quite positive (e.g., the candidate is 
said to be honest, smart, and empathic). For purposes of developing this example, suppose 
we can characterize how positive each piece of information is considered to be using a 
metric that ranges from 0 to 10, with higher numbers reflecting higher degrees of positivity. 
We refer to the positivity of a piece of information as Pk, where k indicates the specific 
piece of information to which we are referring: P1 refers to the perceived positivity of the 
first piece of information, P2 refers to the perceived positivity of the second piece of 
information, and P3 refers to the perceived positivity of the third piece of information. 
Suppose we want to predict how favorable a person will feel toward the candidate based 
on these three pieces of information. If we let F refer to a person’s overall feeling of 
favorability toward the candidate, with higher values indicating higher levels of 
favorability, then one model that describes the impact of the information is the following: 

                             F = P1 + P2 + P3                                                   (5) 



 This model is a simple summative function that specifies that the overall feeling of 
favorability toward the candidate is the sum of the judged positivity of each individual 
piece of information (we ignore, for the moment, the metric of F and the issue of adjusting 
for metric differences). Equation 5 can be stated in more general form using summation 
notation as follows: 

 

where k is the number of pieces of information, in this case 3. 
Now suppose that instead of a summative function, an averaging function is operating. 

That is, the overall feeling of favorability is the average of the positivity of the information 
presented rather than the sum of it. In this case, Equation 5 becomes 

                            F = (P1 + P2 + P3)/3                                               (6) 

and this can be represented more generally in summation notation as 

 

 What are the implications of specifying the function as being summative versus 
averaging in form? It turns out, they are considerable. Let’s explore the summation model 
first. Suppose a person judges the positivity values of the three pieces of information as 8, 
8, and 8, respectively. The overall feeling of favorability toward the candidate will be 8 + 
8 + 8 = 24. Now suppose we describe a second candidate to this person using the same 
three pieces of information but we add a fourth descriptor to them (cunning), that is judged 
to have a positivity value of 4. According to the summation model, the overall feeling of 
favorability toward this new candidate will be 8 + 8 + 8 + 4 = 28, and the person will prefer 
the second candidate to the first candidate. Psychologically, it is as if the second candidate 
brings all the same qualities as the first candidate (i.e., P1, P2, and P3) and then “as a bonus,” 
you get a fourth positive attribute as well (P4). Hence, the person prefers the second 
candidate to the first candidate. 

 Now consider instead the averaging function. The overall feeling toward the first 
candidate is predicted to be (8 + 8 + 8)/3 = 8.0 and the overall feeling toward the second 
candidate is said to be (8 + 8 + 8 + 4)/4 = 7.0. In the averaging model, exactly the reverse 
prediction is made in terms of candidate preference; namely, the person now will prefer the 
first candidate to the second candidate. Psychologically, the first candidate has nothing but 
very positive qualities, whereas the second candidate has very positive qualities but also 
some qualities that are only somewhat positive. The person prefers the first candidate, who 
has nothing but very positive qualities, to the second candidate, who has very positive 
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qualities but also moderately positive qualities. 
 Which function better accounts for the impressions people form? It turns out that 

this can be evaluated in a simple experiment in which two candidates would be described, 
one with three very positive qualities (Candidate A) and a second with three very positive 
qualities and a fourth moderately positive quality (Candidate B). Participants would then 
be asked to indicate which of the two candidates they prefer. The summation model 
predicts that participants should prefer Candidate B to Candidate A, whereas the averaging 
model predicts that participants should prefer Candidate A to Candidate B. One can 
differentiate the two models empirically by conducting the above experiment and 
determining which candidate tends to be preferred. This is a simple experiment without 
complex modeling. If the results showed that people tend to prefer Candidate A to 
Candidate B, then this would be consistent with (but not proof of) a summative process 
rather than an averaging process. If the results showed that people tended to prefer 
Candidate B to Candidate A, then this would be consistent with (but not proof of) an 
averaging process rather than a summative process. Which process operates has 
implications for the design of political campaigns and advertising strategies to sell 
products. For example, if an advertising campaign adds to a person’s cognitions a 
moderately positive piece of information about a product that is already quite positively 
evaluated, in the case of the averaging model, the advertisement should backfire and lower 
evaluations of the target product, thereby adversely affecting sales. 

 The literature on impression formation has extended these simple models of 
“cognitive algebra” to more complex model forms. For example, it is almost certainly the 
case that some information is more important to people in forming impressions than other 
information. As such, it makes sense to weight each piece of information by its importance 
to the individual. Equation 5 can be modified to include such weights, as follows: 

                                F = w1P1 + w2P2 + w3P3                                           (7) 

where wi is the importance of information i to the individual. Note that Equation 5 is a 
special case of Equation 7, namely the case where w1 = w2 = w3 = 1. Expressed in 
summation notation, Equation 7 can be represented as 

 

For the averaging model, introducing importance weights yields the following: 

                                   F = (w1P1 + w2P2 + w3P3)/(w1 + w2 + w3)                            (9) 
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Equation 9 can be restated using summation notation as 

 

By extending the logic of algebraic models to the domain of “cognitive algebra” (which 
uses the premise that mental operations can be modeled by simple algebra), a great many 
insights into human information processing have been gained. Some of this research has 
involved simple experiments that pit competing predictions of different algebraic models 
against one another, whereas other research has taken the path of more complex math 
modeling with adjustable constants, error terms, and the like. 

 Parenthetically, the research literature finds support for both the summation and 
averaging models. In some contexts, people average the implications of information, 
whereas in other contexts, they sum it. There also are individual differences in these 
tendencies, with some people tending to average information in general whereas others 
tend to sum it in general. There are contexts for which simple summation or averaging 
models do not hold, and more complex combinatorial models are required to capture the 
integration dynamics.  
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APPENDIX: MODELING ISSUES FOR PERFORMANCE EXAMPLE 

 This appendix describes details for the example modeling the effects of ability and 
motivation on performance, where the relationship between performance and motivation 
is nonlinear instead of linear at a given level of ability. We assume the reader is versed in 
standard statistical methods and psychometric theory. We illustrate the case first where 
motivation is assumed to impact performance in accord with a power function, with the 
shape of the power function changing as a function of ability. Then we mention the case 
where the relationship between performance and motivation is assumed to be S-shaped, 
with the form of the S varying as a function of ability. 

 We build the power function model by first positing that performance is a power 
function of motivation, 

              P = a + bM c                                                         (A.1) 

where a and b are adjustable constants to accommodate metrics and c is an adjustable 
constant to isolate the relevant power curve in light of a and b. According to the broader 
theory, the effect of motivation on performance varies depending on ability (e.g., when 
ability is low, increases in motivation will have negligible effects on performance, but 
when ability is moderate to high, increases in motivation will have a more substantial 
impact on performance). Stated another way, the shape of the power curve will differ 
depending on the level of ability of students, such that the value of c is some function of A. 
In addition, it is likely the case that the adjustable constants a and b vary as a function of 
A. To simplify matters and to develop the underlying logic, we will assume that c is a linear 
function of A, that a is a linear function of A, and that b is a linear function of A. This yields 
the equations 

   c = d + fA 
   a = g + hA 
   b = i + jA 

where c, d, f, g, h, i, and j are adjustable constants that conform to the respective linear 
models. Using substitution principles, we can substitute the right-hand side of these 
equations into A.1, which yields 

                      P = (g + hA) + (i + jA)(M) (d + fA) 

Expanding, we obtain 

                         P = (g + hA) + iM (d + fA) + jAM (d + fA) 



We can rewrite this equation using the more familiar symbols of a and b for adjustable 
constants in regression analysis: 

                       P = a + b1A + b2M (b3 + b4A) + b5AM (b3 + b4A) 

This model can be fit to data and the values of the adjustable constants estimated using 
nonlinear regression algorithms in SPSS or some other statistical package. The adjustable 
constants are amenable to interpretation, but we forgo explication of this here. Additional 
interpretative complications present themselves if the metrics involved are arbitrary, but 
we do not pursue such matters here either. 

One intuitive way of seeing the implications of the function once the values of the 
adjustable constants are estimated is to calculate predicted scores that vary M by 1 unit at 
select values of A. These can be graphed and then subjected to interpretation. 

An alternative approach to modeling the data that uses methods that are more familiar 
to social scientists is to use polynomial regression. In this approach, performance is 
assumed to be a quadratic function of motivation. Although the full quadratic curve most 
certainly is not applicable (because it is U-shaped), the part of the curve that forms the right 
half of the “U” could apply. The model includes adjustable constants to isolate this portion. 
We begin by writing a model where performance is a quadratic function of motivation 

                        P = a1 + b1M + b2M 2                                             (A.2) 

and the adjustable constants in this equation (the intercept and the regression coefficients) 
are modeled as being a linear function of ability (we could use a nonlinear function, but for 
the sake of pedagogy, we assume a linear function), yielding 

   a1 = a2 + b3A 
   b1 = a3 + b4A 
   b2 = a4 + b5A 

Using the substitution principle, we substitute the right-hand sides of these equations for 
their respective terms in Equation A.2, which produces 

               P = (a2 + b3A) + (a3 + b4A)M + (a4 + b5A)M 2 

Expanding this yields 

           P = a2 + b3A + a3M + b4AM + a4M 2 + b5AM 2 

Rearranging and relabeling the constants to conform to more traditional notation yields the 
model 



                           P = a + b1A + b2M + b3AM + b4M2 + b5AM 2 

This model can be fit using standard least squares regression. 
To model an S-shaped function, one can stay with polynomial regression but extend 

the logic to a cubic function. The basic idea is to express performance as a cubic function 
of motivation 

                  P = a1 + b1M + b2M 2 + b3M 3 

and then to model the adjustable constants as a function of A. Finally, use the substitution 
method to derive the more complex generating function. 

Alternatively, one can use a logistic function to capture the S shape and then model the 
adjustable constants within it as a function of A. This approach requires the use of nonlinear 
algorithms in estimating the adjustable constants. 
 

 


