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Quantile Regression 
 

This primer focuses on quantile regression. We assume you have read the section on 
quantile regression in Chapter 11, but we repeat parts of it here to set context. We begin 
with a brief review of the logic of quantile regression. We then discuss coefficient 
interpretation and indices of model fit. We then contrast quantile analysis with another 
common form of analysis that is based on breakpoints in a distribution. Finally, we 
consider the practice of data jittering to make quantile regression more widely applicable.  

As noted in the main text, traditional multiple regression is fundamentally an 
analysis of conditional means. Consider a simple bivariate case where the outcome is the 
amount of time per week that an adolescent spends with his or her mother (Y) and the 
predictor is the age of the adolescent (X), which ranges from 12 to 17. Each age is a 
different predictor “profile” or population “segment.”  Consider the following data where 
we calculate the mean of the outcome for each segment:   

      Mean Hours  
Age            Spent Together  

12      32   
13      30   
14      28   
15      26   
16      24   
17      22  

For any given profile or segment, we can characterize the mean of the outcome for that 
profile. This is called a conditional mean. The mean amount of time spent with one’s 
mother given adolescents are 12 years old is 32 hours. The mean amount of time spent 
with one’s mother given adolescents are 13 years old is 30 hours. And so on.  

If we have multiple predictors, then a “profile” refers to a specific combination of 
scores across the predictors. If we predict time spent with one’s mother from age and 
gender, then one predictor profile is “12 year old males,” another predictor profile is “12 
year old females,” another predictor profile is “13 year old males,” and so on.  

In addition to describing the mean of Y at any given predictor profile, multiple 
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regression also describes how the outcome means change as we move across values of X 
from one predictor profile to another predictor profile. For example, how does the mean 
amount of time spent with one’s mother change as an adolescent’s age increases or 
decreases?  From the data above, we can see that for every one unit that age increases, the 
mean amount of time spent together decreases by 2 hours. Thus, the unstandardized 
regression coefficient is -2.0. It provides perspectives on mean changes across X values.  

Quantile regression is an extension of multiple regression. Instead of estimating Y 
means for different predictor profiles and how the means vary across profiles, it seeks 
instead to characterize the values of different quantiles of Y for predictor profiles and 
how these values vary across profiles. 

A quantile is analogous to the concept of percentiles. Informally, a percentile is a 
score or point in a distribution that a specified percentage of scores are less than or equal 
to. If we tell you a GRE score of 161 defines the 80th percentile, this means that 80% of 
individuals score 161 or less on it. If we tell you a GRE score of 153 defines the 50th 
percentile, this means that 50% of individuals score 153 or less on it. Statisticians 
typically use the term quantile instead of percentile, they refer to it with the letter q, and 
they state it in probability or proportion terms rather than as percents. For example, the 
0.80 quantile (q = 0.80) for the GRE is a score of 161.  

One of the most well-known quantiles is q = 0.50, which is the median. When we 
use quantile regression to analyze q = 0.50 on the outcome variable, we are applying the 
spirit of traditional regression analysis, but to medians instead of means. Medians are 
more outlier resistant than means. 

Interestingly, we also can analyze other quantiles, so we can characterize predictors 
of what is happening at the lower end of the outcome distribution or the upper end of the 
outcome distribution. This is important because sometimes there will not be group/profile 
differences in means or medians in the middle of an outcome distribution, but there will 
be group/profile differences in the lower or upper parts of the distribution. Quantile 
regression allows us to explore such possibilities.  

As an example, suppose we want to compare males and females on their reported 
depression levels as reported on the classic CES-D scale. When the analysis is conducted 
using q=0.50 (the median), we might find a statistically significant difference, such that 
females have a higher median than males (12.0 versus 9.0). When we conduct the same 
contrast at q = 0.20, we might find the quantile values do not differ (males = 5.0, females 
= 5.0). Finally, we might find at a quantile of 0.80, the gender difference is even more 
exaggerated than what it was at the median (males = 19.0, females = 25.0). Stated another 
way, the regression coefficient for the dummy variable of gender is 0.0 at q = 0.20, 3.0 at 
q = 0.50, and 6.0 at q = 0.80. Koenker (2005) describes methods that can be used for 
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significance testing of differences in coefficients for different quantiles. For example, in 
the depression analysis, is the coefficient for gender of 6.0 when q = 0.80 significantly 
different from the coefficient of 3.0 when q = 0.50? 

As another example, gender gaps in math achievement tend to be more pronounced 
at the upper end of the achievement dimension as contrasted with the middle of the 
distribution, and they are almost non-existent at the lower end of the distribution (Reeves 
and Lowe, 2009). One explanation of this result is that females often choose not to take 
higher level math courses, thereby promoting a larger gender difference at the higher 
levels of math achievement. Quantile regression has identified health disparities between 
groups that went undetected when the focus was on group differences in means (e.g., 
Gebregziabher et al., 2011; Juarez, Tan, Davis, et al., 2014). For introductory discussions 
of quantile regression, see Cade and Noon (2003) and Hao and Naiman (2007).    

Quantile regression analysis has several useful properties. One of these is that it 
does not make some of the strong assumptions about error terms that traditional 
regression makes (e.g., it does not make the assumption of normally distributed errors). 
Quantiles also are outlier resistant (but see below for qualifications). 

Just as we do not literally calculate the mean of the outcome for each predictor 
profile in OLS, the same is true in quantile regression – the target quantile for each 
predictor profile is not literally computed. In traditional OLS, we make the assumption 
that means are a linear function of the predictor(s) and then estimate parameters by 
making reference to a regression surface. Quantile regression uses analogous methods, 
but applied to quantiles. There are different algorithms for coefficient estimation in 
quantile regression, with the most popular one based on the simplex methods proposed by 
Barrodale and Roberts (1974). For a description of this approach, see Koenker (2005). 
Another approach to coefficient estimation is based on interior point methods (Portnoy & 
Koenker, 1997), with a third option being Frisch-Newton methods based on sparse linear 
algebra (Koenker, 2005). There also are multiple strategies for estimating standard errors 
and confidence intervals. These are discussed in Koenker (2005) and we do not delve into 
them here. A popular method for estimating confidence intervals uses a rank inversion 
method. Another method uses an asymptotic covariance approach based on Huber-like 
sandwich estimators. Powell (1990) suggests a kernel estimation approach while others 
prefer bootstrapping. See Koenker (2005) for details. 

OUTLIERS AND QUANTILE REGRESSION 

In traditional regression models, distinctions are sometimes made between outliers and 
leverage points. Outliers are extreme observations on the outcome variable that either 
distort the basic trend in the data or adversely affect standard errors and statistical power. 
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Distorting cases also can occur in the predictor space independent of the outcome, i.e., 
they represent highly unusual predictor profiles. These are often called leverage points 
instead of outliers (because they “leverage” the regression plane). Quantile regression is 
generally robust to outliers, but not necessarily to large leverage points. For this reason, it 
is not uncommon for researchers to conduct leverage analyses of the predictor space and 
to pursue corrective methods for observations with high leverages. For a discussion of 
robust methods for accomplishing this task, see Wilcox (2017).  

In general, larger sample sizes make it harder for any one case to affect regression 
results. One (imperfect) way to reduce the impact of leveraged cases is to use large N. 

INTERPRETATION OF COEFFICIENTS 

The interpretation of coefficients in quantile regression follows the same basic logic as 
traditional multiple regression except instead of means, the parameter of interest is the 
targeted quantile. Dummy variables, product terms, and polynomials all are interpreted in 
ways directly analogous to multiple regression. If we perform a quantile analysis using q 
= 0.50, and our predictor X is a dummy variable for gender scored 0 = females and 1 = 
males, then the regression coefficient for X is the outcome median difference between 
males and females, holding constant all other predictors in the equation. If a predictor, Z, 
is the number of years of education, then the regression coefficient for Z indicates how 
much the predicted median of the outcome changes for every one unit increase in the 
number of years of education, holding constant the other predictors.  

OVERALL MODEL FIT 

Traditional multiple regression generates a squared multiple correlation to provide a 
sense of the degree of predictive accuracy of the regression model. There is no such 
statistic in quantile regression. Some analysts calculate an analog to it, called a pseudo R 
squared, that uses the statistical concept of log-likelihoods. A log-likelihood, stated 
informally, is an index of fit that posits a population model and then estimates the 
probability of the sample data occurring given that model. The log-likelihood is the 
natural log of this probability. The pseudo R squared calculates a log-likelihood for an 
intercept only model with no predictors and then calculates how much this log-likelihood 
improves if that model is compared to a model that includes the predictors of interest. For 
example, a pseudo R squared of 0.10 indicates that the log-likelihood of the model that 
does not include the predictors was improved by 10% when the predictors were added to 
the intercept only model. The use of pseudo R squares is somewhat controversial. For a 
discussion of pseudo R squares and log likelihoods, see Long (1997). Log likelihoods 
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also are discussed in the primer on mixture regression.  

BREAKPOINTS VERSUS QUANTILES 

Quantile analysis works with cumulative frequency distributions of the outcome variable. 
You likely have encountered cumulative frequency distributions in your use of popular 
statistical packages. For example, consider in Figure 2.1 the output from an SPSS 
frequency analysis of adult marijuana users who reported their age at first use. The 
column on the extreme right provides the cumulative percents and allows us to state the 
percent of individuals who first tried marijuana at a given age or lower. For example, 
11.2% of the sample tried marijuana at age 13 or younger. These percentages, of course, 
can be reframed as probabilities by dividing them by 100, yielding what is known as a 
cumulative probability distribution. 

 
 

 
 
 
FIGURE 2.1. Age at First Marijuana Use 
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One approach to comparing groups using cumulative probability distribution 
concepts is called breakpoint analysis. Consider an example where we want to compare 
males and females on the CES-D depression scale (hence, depression is our outcome and 
gender is our predictor). In Figure 2.2, we plot a cumulative probability distribution for 
depression scores for males and females, separately. The CES-D scale ranges from 0 to 
60, with higher scores indicating greater levels of depressive symptoms. In the general 
population, most people score near 0. A score of 16 on the scale is said to be “clinically 
meaningful” and is a cutpoint (or breakpoint) that is a flag for potential depression 
associated problems.  

In breakpoint analysis, one a priori identifies a score on the outcome that is of 
theoretical interest (e.g., a score of 16 on the CES-D) and uses the cumulative distribution 
to compare the proportion of cases above and below that score for the two groups. In 
Figure 2.3, we can draw a (solid) vertical line upward from the breakpoint on the X axis 
and then examine the proportion on the vertical axis where that line intersects the 
cumulative distribution for each group (see the arrows with dashed lines) As seen in 
Figure 2.3, about twenty percent of males have a CES-D score above 16, with 80% being 
at or below it. By contrast, 32% of females have a CES-D score above 16, with 68% 
being at or below it. Females thus are more likely to be above the breakpoint than males. 
Since 16 is an important “marker” for troublesome depression, this result is of import.  

 
 

 
 
FIGURE 2.2. Cumulative CES-D Distribution for Males and Females 
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FIGURE 2.3. Breakpoint Analysis 
 

Breakpoints can be subjected to multivariate analysis using binary regression 
modeling. For example, each person in the sample is given a dichotomous-based score 
for the CES-D based on the breakpoint value of 16, such that 0 = person is at or below the 
breakpoint, and 1 = person is above the breakpoint. Then, logistic/probit regression or a 
modified linear probability model is used to probe the relations between this dichotomous 
outcome and a set of predictors, such as gender, income, ethnicity, and so on. The choice 
of breakpoint values is theoretically or substantively driven and must be carefully 
justified. Dichotomizing continuous variables can be problematic, so one does so only in 
cases where there is theoretical or practical justification for it.  

In quantile regression, the same cumulative distribution plot is of interest, but we 
examine it from a different perspective than breakpoint analysis. In quantile regression, 
we start by a priori specifying a quantile, say q=0.80, rather than a breakpoint score to 
focus on. We then use the cumulative distribution to identify the score that maps onto that 
quantile for each group. The dynamics are shown in Figure 2.4, where we draw a (solid) 
horizontal line across the plot at the quantile of interest. We then identify the scores on 
the horizontal CES-D dimension where the line intersects the cumulative distribution for 
each group (see dashed lines). If we are interested in q= 0.80, for example, the quantile 
value is 15 for males and 20 for females:  Twenty percent of males have a CES-D score 
above 15, whereas 20% of females have a CES-D score above 20.  
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FIGURE 2.4. Quantile Analysis 

 
The choice of the particular quantiles to focus on, ideally, is theoretically or 

substantively driven, but the choice also can be informed by preliminary examination of 
the distances between curves for the groups on their respective cumulative distributions 
(ASA offers program for plotting cumulative distributions for two groups on the same 
graph). What matters most from the perspective of quantile analysis is the degree of 
horizontal separation between the curves (from left to right).  

Which analysis should you conduct, breakpoint-based binary regression analyses or 
quantile regression analyses?  It depends on what questions you are trying to answer. If 
you have identified a specific score on the outcome that is of theoretical or practical 
significance and you want to identify factors that push individuals above or below that 
score, then binary regression is appropriate. You do not really care how far below or how 
far above the breakpoint that people are; you just want to understand factors that make 
people above or below it. Our experience is that in practice, such breakpoints are rare and 
one must be careful about invoking them. For example, with the benchmark value of 16 
for the CES-D, do we really not care how much above the score of 16 people are?  Do we 
really want to treat someone with a score of 17 as being the same as someone who has a 
score of 50 (both are above the breakpoint, hence both get a score of 1 on the 
dichotomously defined outcome)?  And do we really want to treat someone with a score 
of 0 as being the same as someone with a score of 15 (both are below the breakpoint)?  
We can think of some cases where this might be useful, but generally speaking, it is a 



                                                                                                                               Quantiles    9 

 
 

rather crude approach to building a science of depression. If instead your interest is in 
comparing scores of groups of individuals at different portions of the outcome dimension 
(at the low end of the outcome dimension, in the middle of the outcome dimension, and at 
the high end of the outcome dimension), then quantile regression is an appropriate tool 
for doing so.    

JITTERING 

Sometimes we treat variables as continuous, but we only have coarse, discrete measures 
of them. Quantile regression assumes a continuous outcome, but sometimes we 
operationalize such outcomes with, say, only a small number (e.g., 5 to 7) of 
measurement categories. This can produce degenerate solutions in quantile regression as 
a result. There are different ways of handling such scenarios. A somewhat crude but often 
workable solution is to smooth the outcome variable by adding some “jitter” to it 
(Machado and Santos Silva, 2005). Jittering adds a very small amount of random 
perturbance to each score – not enough to affect substantive results but enough to allow 
the statistical algorithms to estimate the parameters of interest.  

The most common way of jittering integer measures (such as a 1 to 7 Likert-scale) 
is to generate random numbers from a uniform distribution whose span is defined by the 
lower and upper real limit of each number. For example, let V be the span around the 
number that you wish to cover. For the score of 6, the real limits are 5.5 to 6.5, so the 
span is 1. For the score of 1, the real limits are 0.5 to 1.5, so again the span is 1. Thus, V 
= 1 for each score on the variable. Random noise is then added to a given score using a 
uniform distribution between –V/2 and +V/2. This is called symmetric jittering. The span 
is called the dequantization value. It assumes that people with a score of 5, for example, 
actually scored somewhere between 4.5 and 5.5 on the underlying continuous dimension 
and that these individuals are uniformly distributed across this span. For some scenarios, 
we might use instead an algorithm called to-the-right jittering, such as for cases involving 
counts (see Machado & Santos Silva, 2005). In this case, random noise is added to a 
score based on a uniform distribution from 0 to V (where V is commonly set to 1) instead 
of –V/2 to +V/2. When using jittering, we usually specify a random seed in the computer 
program so results can be replicated by repeating the seed. Random seeds are the starting 
point that algorithms for generating random numbers use.  

Jittering must be used with caution. We must admit, it feels a bit perverse to 
purposely add random noise to data. But the underlying assumptions of jittering often are 
not unreasonable and if its use ultimately allows us to apply more powerful methods of 
analysis, then this is desirable. See Machado and Santos-Silva (2005) for an example that 
applies jittering to quantile regression for counts.  
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CONCLUDING COMMENTS 

Traditional ordinary least squares (OLS) regression is the analytic stalwart of the social 
and health sciences. It can be thought of as a method that describes how the central 
tendency of an outcome as represented by the mean varies across different predictor 
profiles. However, we might be interested in using alternative measures of central 
tendency for the outcome (e.g., the median) or we might want to focus our analysis on the 
lower or upper end of the outcome distribution, not just the middle. Quantile regression is 
a tool for doing so. 

Quantile regression does not make assumptions about normality and it is outlier 
resistant, which are desirable properties. However, it can yield distorted characterizations 
of data trends due to unusual leverage points in the predictor space (although this is less 
likely for large N). Care must be taken in applying quantile regression, accordingly. 
Quantile regression also requires outcome measures not be too coarse, but such 
coarseness often can be addressed through judicious use of jittering. 

We make it a common practice to explore data using quantile regression and to gain 
an appreciation for what is going on at the lower, middle and upper end of outcome 
distributions.  
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